ОБЩАЯ ХАРАКТЕРИСТИКА ПРОЦЕССОВ
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Электрохимическое выделение металлов из водных растворов и соединений лежит в основе гидроэлектрометаллургических процессов, т. е. процессов извлечения металлов из руд (электроэкстракцпя) и их очистки (рафинирование) при помощи электролиза. Гидро-электрометаллургическим путем получают и очищают такие металлы, как медь, никель, цинк, кадмий, олово, свинец, серебро, золото, марганец и др. Гидроэлектрометаллургия позволяет получать технически чистые металлы и в ряде случаев вести успешную переработку бедных руд. Электрохимическое выделение металлов использутся для защиты основного металла от разрушения при помощи покрытий из более устойчивых металлов или сплавов, а также для придания изделиям красивого, декоративного вида (гальванотехника). Кроме того, выделение металлов применяется для получения копий и воспроизведения художественных предметов, изготовления лент, бесшовных труб, печатных схем и т. д. (гальванопластика). Возможность использования процесса электролиза с выделением металлов для практических нужд была открыта в 1837—1838 гг. русским академиком Б. С. Якоби.

Электролитическое выделение металлов чаще всего проводят из растворов их простых солей — сульфатов, хлоридов или нитратов. Суммарной катодной реакцией в этом случае будет разряд гидра-тироваппых металлических ионов с их последующим переходом в кристаллическую решетку образующегося на катоде осадка:

 

 ге-== [М] + * Н2О                                       (22.1)

 

Электрохимическое выделение металлов из водных растворов происходит при более отрицательном потенциале, чем равновесный потенциал соответствующего металла в данных условиях. Разность между потенциалом электрода под током (при катодном выделении металла) и соответствующим обратимым электродным потенциалом дает электродную поляризацию

 

А #н = * J *-*!>•                                          (22-2)

 

Долю общей поляризации, не связанную с замедленностью процессов транспортировки, часто называют перенапряжением металла. Перенапряжение и здесь тесно связано с природой электродного процесса.

Поляризация при электрохимическом выделении металлов, так же как и при других электродных реакциях, зависит от плотности тока, увеличиваясь вместе с ней. Однако в данном случае характер этой зависимости часто оказывается более сложным. Даже при осаждении одного и того же металла результаты поляризационных измерений могут укладываться в зависимости от диапазона применяемых плотностей тока, состава раствора и температуры на прямые в одной из следующих систем координат:

 

Ti — J . - n — lgJ , —~lg/. — r - lgj '

 

Экспериментальное исследование кинетики катодного выделения металлов представляет собой сложную задачу, что связано с некоторыми специфическими особенностями этого процесса. В ходе электролиза поверхность катода не постоянна, а непрерывно изменяется вследствие осаждения металла. Характер роста осадка существенно зависит от природы металла и условий электролиза

Для некоторых металлов, например серебра и таллия, типично образование нитеобразных кристаллов и древовидных ответвлений, так называемых усов и дендритов. При наблюдении за развитием отдельного нитеобразного кристалла можно обнаружить изменение его сечения, если меняется приложенный ток. Часто (рис. 22.1, а) с ростом силы тока нить утолщается, а при его уменьшении становится тоньше. Поверхность, на которой происходит осаждение, как бы приспосабливается к силе тока таким образом, чтобы плотность тока, а следовательно, и линейная скорость роста кристалла не менялись. Нередко наблюдается также слоистый рост осадка, при котором кристаллический пакет перемещается с определенной скоростью по поверхности катода (рис. 22.1, б). Металл осаждается в этом случае не на всей поверхности, а лишь на склоне пакета, который, таким образом, представляет собой действительный фронт роста кристалла. При исследовании условий образования осадка на монокристалле серебра было установлено, что устойчивый рост кристалла совершается по одной или несколько спиралям. На рис. 22.2 дана типичная микрокартина спирального роста осадка серебра

h _ h _ h _ h _ .

S \                  S -2 S $ S4

и — распространение осадка по поверхности катода в виде толстого пакета

 

Рис. 22.1. Различные формы роста катодного осадка: а — изменение сечения растущей нити с изменением плотности тока


 

Рис. 22.2. Микрофотография спирального роста осадка серебра

 

Своеобразие роста электролитических осадков металлов затрудняет измерение плотности тока, иными словами, скорости электрохимического процесса. Здесь необходимо различать кажущуюся плотность тока, т. е. силу тока, приходящуюся на единицу геометрической (видимой) поверхности электрода, и истинную плотность тока, равную отношению силы тока к активной поверхности, т. е. к действительной поверхности роста осадка. В процессе образования катодного осадка при неизменной кажущейся плотности тока истинная плотность тока может меняться.

Изучение кинетики электроосаждения металлов связано также с затруднениями, возникающими в связи с неустойчивостью во времени потенциала катода. Изменение потенциала и электродной поляризации вызывается не только изменением активной поверхности и истинной плотности тока, по и другими причинами. Особенно заметно изменение потенциала со временем при выделении металлов на чужеродных электродах, когда электролиз приводит к образованию новой металлической фазы, например при осаждении кадмия, меди, серебра, ртути и ряда других металлов на платиновом катоде. Впервые это явление было обнаружено еще в 1910 г. Лебланом. Изменение величины перенапряжения со временем наблюдается при выделении металла и на одноименном катоде. На рис. 22.3 приведена типичная кривая поляризация -- время, полученная при выделении серебра на серебряном катоде.

По обычной методике снятия поляризационных кривых потенциалы измеряют через некоторый промежуток времени с момента наложения нового значения тока. В результате, как это следует из характера временного изменения потенциала (рис. 22.3), при одной и той же плотности тока получаются сильно отличающиеся значения поляризации, что затрудняет сопоставление данных, полученных разными авторами.

 

 

 

Рис. 22.3. Изменение перенапряжения во времени, часто наблюдаемое при катодном выделении металлов

 

Впервые это явление было обнаружено еще в 1910 г. Лебланом. Изменение величины перенапряжения со временем наблюдается при выделении металла и на одноименном катоде. На рис. 22.3 приведена типичная кривая поляризация - время, полученная при выделении серебра на серебряном катоде.

По обычной методике снятия поляризационных кривых потенциалы измеряют через некоторый промежуток времени с момента наложения нового значения тока. В результате, как это следует из характера временного изменения потенциала (рис. 22.3), при одной и той же плотности тока получаются сильно отличающиеся значения поляризации, что затрудняет сопоставление данных, полученных разными авторами.

Характер осадка и условия его формирования во времени при постоянной силе тока (или при заданном потенциале) зависят не только от природы металла, но и от состава раствора и присутствующих в нем примесей. Примеси поверхностно-активных веществ, а также различных окислителей (например, растворенного кислорода) влияют на кинетику электровыделения металлов. В зависимости от степени чистоты раствора и природы примесей могут меняться характер роста кристаллов, число центров кристаллизации, возникающих за единицу времени на единице поверхности катода, значение поляризации при данной плотности тока, характер ее изменения со временем и т. п. В тех случаях, когда катодный выход металла меньше единицы (электроотрицательные металлы, высокие плотности тока), возникают осложнения, связанные с изменением (обычно повышением) рН прикатодного слоя вследствие выделения водорода. Подщелачивание раствора вблизи катода благоприятствует процессам гидролиза солей металла с образованием его основных солей и гидроксидов, которые могут влиять на ход электроосаждения и включаться в катодный осадок.


ОБРАЗОВАНИЕ МОНОАТОМНЫХ СЛОЕВ МЕТАЛЛОВ ПРИ ПОТЕНЦИАЛАХ ПОЛОЖИТЕЛЬНЕЕ РАВНОВЕСНЫХ

 

К настоящему времени можно считать доказанным, что на подложке из металла Mi, отличного по своей природе от осаждаемого металла М2, в очень многих случаях процесс осаждения начинается с образования моноатомного слоя, а возникновение и развитие кристаллических зародышей совершается уже на этом слое. Осаждение первого монослоя металла на чужеродной подложке наблюдается при потенциале более положительном, чем равновесный потенциал выделяющегося металла в данном растворе, т. е. при данной активности его ионов. В связи с этим в зарубежной литературе широко используется термин «допотенциальное осаждение» (underpotential deposition), который при буквальном его переводе на русский не передает сущности явления, вместо него поэтому используются термины «осаждение при недонапряжении» или «дофазовое осаждение». По-видимому, первым, кто наблюдал эффект дофазового осаждения металлов, был Гевеши, работы которого относятся к 1912 г. Они были затем основательно забыты, и интерес к этой проблеме возродился лишь в 60—70-х годах, и сейчас она оказалась в центре внимания и электрохимиков и физиков. Очень интересные результаты были получены с применением циклической вольтамперометрии и тонкослойных электрохимических систем. На рис. 22.4 приведена циклическая /—£-кривая, описывающая осаждение таллия на серебряном электроде. Катодный пик тока наблюдается при потенциале примерно на 0,4 В положительнее равновесного потенциала таллия в растворе выбранного состава и отвечает образованию первого монослоя. Второй подъем тока приходится на равновесный потенциал таллия и соответствует выделению компактного осадка таллия, т. е. появлению в системе новой твердой фазы — металлического таллия. Переход в анодную область позволяет наблюдать максимум тока при равновесном потенциале таллия и другой максимум, отвечающий растворению дофазового слоя. Количество таллия, осевшего в области дофазового осаждения, можно с достаточной точностью рассчитать по количеству электричества, потраченного на его растворение при потенциале первого пика. Расчеты показывают, что при дофазовом осаждении образуются обычно полные или незавершенные моноатомные металлические слои. Так как потенциал дофазового осаждения (потенциал пика) ё>П положительнее соответствующего равновесного потенциала &р, то энергия связи атомов первого монослоя с чужеродной подложкой должна быть больше, чем атомов осаждаемого металла с одноименной подложкой. Сдвиг потенциала Дс?п в положительную сторону является следствием повышенной энергии связи A<?m,2 или, с некоторым приближением, повышенной теплоты адсорбции:


 

 

Рис. 22.4. Циклическая вольтампер иая кривая, полученная на Ag-электроде в 2-Ю-4 М T1NO3 на фоне 0,5 М Na2SO,i; скорость развертки 20-Ю-3 В-с-1

 

Потенциал дофазового осаждения можно описать формулой Нерн-ста для электродов первого рода:

Если принять, что активность металла аи в растущем моноатомном слое отлична от единицы (как это обычно принимается для компактного металла) и зависит от степени покрытия в подложки монослоем,

Поскольку 02f2<l, потенциал монослоя в согласии с опытом оказывается положительнее равновесного потенциала того же металла в том же растворе. Из (22.5) также в согласии с опытом следует, что &П меняется с активностью ионов металла в растворе по такому же закону, как и равновесный потенциал электрода первого рода:

Соблюдение зависимости (22.6) указывает на то, что величина п отвечает заряду иона z , т. е. в образовании монослоя участвуют не ионы или частично разрядившиеся ионы, а атомы металла.

Уравнение (22.5), таким образом, удовлетворительно описывает ряд основных особенностей дофазового осаждения металлов, но не раскрывает его механизм. В этом отношении более перспективными представляются работы, в которых Д£„ сопоставляется с элект-роотрицательностями металлов, работами выхода электронов из них и т. д. По Кольбу, Прзасницкому и Геришеру, между Д£п и разностью работ выхода электрона a«'£ из металла подложки (Mi) и из осаждающегося металла (М2) существует прямо пропорциональная зависимость с наклоном, равным 0,5:

F \ g ]{ = 0,5 Ды1'! .                                           (22.7)

 

Подобная же зависимость была найдена Трасатти, ко с наклоном, равным единице:

F \ё „ = Wgl .                                                  (22.8)

 

Рассмотрение кривых Д£ —Да>£- с привлечением всех наиболее надежных данных по потенциалам дофазового осаждения и работам выхода показало, что коэффициент пропорциональности k лежит между 0,5 и 1, т. е.

F \(о и — k Дсо ' .                                         /99 Q\

 

Независимо от величины k из уравнений (22.7) —(22.9) следует, что дофазовое осаждение металлов наблюдается только в том случае, когда работа выхода электрона из металла подложки (металл Mi) больше, чем из металла монослоя (М2). Следовательно, образование монослоя сопровождается переносом электронов из него в субстрат и появлением диполей на границе раздела М, и М2, причем положительный конец диполя расположен на монослое. Свойства монослоя, его структура, во многом определяемая структурой субстрата, играют очень важную роль в процессе дальнейшего развития осадка, влияя также на адсорбционные, каталитические, коррозионные и другие характеристики металла. Дофазовое осаждение представляет поэтому не меньший интерес, чем. зароды-шеобразование, и с ним необходимо считаться при рассмотрении механизма возникновения новой металлической фазы.

Несмотря на все особенности протекания процессов электрохимического выделения металлов, создающие серьезные трудности при проведении экспериментов и при теоретической интерпретации их результатов, к настоящему времени уже накоплен значительный фактический материал и сформировались определенные взгляды на природу этих процессов. Получение достаточно достоверных опытных данных сделалось возможным благодаря развитию техники эксперимента (применение новых методов исследования, при помощи которых удается избежать осложнений, связанных с особенностями построения кристаллической решетки и изменением

потенциала во времени), разработке методики измерения поверхностен роста и, соответственно, истинной плотности тока, тщательной очистке растворов и т. п.


Дата: 2019-05-28, просмотров: 202.