СТРУКТУРА ЭЛЕКТРООСАЖДЕННЫХ МЕТАЛЛОВ
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Роль структуры электролитических осадков в гальванотехнике

Структура электроосажденных металлов является одним из существенных признаков, определяющих нормальное течение, а в некоторых случаях и принципиальную возможность проведения электрометаллургического процесса. Однако между процессами электролитического рафинирования металлов или осаждения металлов с нерастворимыми анодами, с одной стороны, и процессами получения покрытия, с другой, с точки зрения роли структуры имеется принципиальная разница. В первых двух случаях приходится в первую очередь считаться с расходом электрической энергии. По этому признаку и выбирают состав электролита, режим и прочие условия процесса. Структура металла при электролитическом рафинировании их играет подчиненную роль, так как в большинстве случаев осаждающийся металл подвергается переплавке; достаточно для этого получать плотные, не осыпающиеся с катодной поверхности осадки. Важно также, чтобы на катоде не вырастали длинные кристаллы, которые могут вызывать короткие замыкания. При электроосаждении цинка, например, приходится сравнительно часто менять катоды также по соображениям ухудшения качества металла (в структурном отношении) по мере его наращивания.

В гальванотехнике структура осадка играет доминирующую роль в процессе. Расход электрической энергии не отражается сколько-нибудь заметит) на общей стоимости процесса покрытия, так что выбирают не тот электролит, который обладает наименьшим омическим сопротивлением, а тот, который дает возможность получить лучшие в структурном отношении осадки. Стоимость самого электролита допускается более высокой, чем в электрометаллургических процессах. Помимо состава самого электролита все остальные условия процесса также подбирают с той целью, чтобы они обеспечивали получение осадков плотных, мелкокристаллических, а в некоторых случаях даже блестящих.

Не говоря уже о том, что такие требования являются обязательными при декоративных покрытиях, следует отметить, что даже и в случаях осаждения электроотрицательных по отношению к железу металлов, например цинка или кадмия, химическая стойкость защищенного металла тем выше, чем плотнее и мельче структура электроосажденного металла. Еще большую роль структура покрытия играет при осаждении металлов, электроположительных по отношению к основному металлу, например при свинцевании или лужении железа. Как ниже будет показано, механические свойства покрытий также находятся в сильной зависимости от их структуры. По этим причинам мы подробно остановимся на факторах, влияющих в той или иной степени на структуру электроосажденных металлов.

Выделение металлов на катоде рассматривается как процесс кристаллизации. Последняя протекает в две стадии: образование центров кристаллизации (образование зародышей) и рост образовавшихся центров кристаллизации. Каждый из этих двух процессов протекает с определенной скоростью, и в зависимости от условий электролиза (температуры, плотности тока, перемешивания), природы осаждающегося металла и растворителя, наличия примесей в электролите и т. д. преобладает тот или другой процесс, в связи с чем получается та или иная структура металла. Число образующихся в единицу времени кристаллов можно рассматривать как равнодействующую относительных склонностей разряжающихся ионов к образованию новых зародышей и росту существующих кристаллов.

В гальванотехнике представляют ценность лишь равномерные мелкокристаллические осадки. Такие металлы, как железо, кобальт, никель, кристаллизуются из растворов своих простых солей, особенно при низких температурах, в виде мелкокристаллических, блестящих, почти зеркальных осадков. Ближайшие к катоду слои настолько мелкокристалличны, что они целиком воспроизводят форму металлической поверхности. Некоторые металлы (медь, цинк, сурьма, висмут) при, аналогичных условиях, хотя и дают более грубую структуру, но все же образуют плотные сплошные осадки, по крайней мере в тонких слоях. Лишь по мере утолщения осадка начинается, в первую очередь на краях и углах катода (где наблюдается большая плотность тока), образование дендритообразных осадков или наростов. Между тем такие металлы, как свинец — в уксуснокислом или азотнокислом растворе, олово — в сернокислом или хлористом растворе, в отсутствии специальных добавок не могут быть осаждены в виде плотного мелкозернистого осадка. Отдельные кристаллы вырастают по направлению к аноду и в очень короткое время могут достичь длины в несколько сантиметров, вызывая короткое замыкание. При осаждении серебра из растворов простых солей также преобладает рост кристаллов над скоростью образования центров кристаллизации. Золото и платина в растворах простых солей выделяются на катоде в виде порошкообразных осадков.

Несмотря на указанные особенности природы металла, мы располагаем в настоящее время значительным количеством данных, позволяющих вести процесс электроосаждения таким образом, чтобы структура покрытия отвечала своему назначению. Вообще говоря, для каждого процесса необходимо соблюдать определенные условия, и общие положения, на которых мы ниже остановимся, имеют не абсолютное, а относительное значение. Нельзя, например, сказать, что если повышенная плотность тока или пониженная температура способствует получению мелкокристаллических осадков, то можно во всех случаях в одинаковой степени повышать плотность тока или понижать температуру. Тем не менее, учитывая особенности каждого конкретного случая, можно заранее сказать, в каком направлении может повлиять такое-то изменение состава электролита или выбор самого электролита, как повлияет, например, повышение плотности тока или температуры, перемешивание и т. д. Для этого нам надо ближе познакомиться с процессом образования металлического покрытия при электролизе.

Электрохимия является разделом науки, изучающим взаимодействие ионов (электрически заряженных частиц вещества, образующихся при потере или присоединении электронов) в электролитах и явления на границе между поверхностями твёрдых токопроводящих тел (электродов) и электролитом.

Дата: 2019-05-28, просмотров: 183.