Глава I . Постановка задач массового обслуживание
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Содержание

 

ВВЕДЕНИЕ

ГЛАВА I. ПОСТАНОВКА ЗАДАЧ МАССОВОГО ОБСЛУЖИВАНИЯ

1.1 Общие понятие теории массового обслуживания

1.2 Моделирование систем массового обслуживания

1.3 Графы состояний СМО

1.4 Случайные процессы

Глава II. УРАВНЕНИЯ, ОПИСЫВАЮЩИЕ СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ

2.1 Уравнения Колмогорова

2.2 Процессы «рождения – гибели»

2.3 Экономико-математическая постановка задач массового обслуживания

Глава III. МОДЕЛИ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ

3.1 Одноканальная СМО с отказами в обслуживании

3.2 Многоканальная СМО с отказами в обслуживании

3.3 Модель многофазной системы обслуживания туристов

3.4 Одноканальная СМО с ограниченной длиной очереди

3.5 Одноканальная СМО с неограниченной очередью

3.6 Многоканальная СМО с ограниченной длиной очереди

3.7 Многоканальная СМО с неограниченной очередью

3.8 Анализ системы массового обслуживания супермаркета

ЗАКЛЮЧЕНИЕ

 



Введение

 

В настоящее время появилось большое количество литературы, посвященной непосредственно теории массового обслуживания, развитию ее математических аспектов, а также различных сфер ее приложения - военной, медицинской, транспортной, торговле, авиации и др.

Теория массового обслуживания опирается на теорию вероятностей и математическую статистику. Первоначальное развитие теории массового обслуживания связано с именем датского ученого А.К. Эрланга(1878-1929),с его трудами в области проектирования и эксплуатации телефонных станций.

Теория массового обслуживания — область прикладной математики, занимающаяся анализом процессов в системах производства, обслуживания, управления, в которых однородные события повторяются многократно, например, на предприятиях бытового обслуживания; в системах приема, переработки и передачи информации; автоматических линиях производства и др. Большой вклад в развитие этой теории внесли российские математики А.Я. Хинчин, Б.В. Гнеденко, А.Н. Колмогоров, Е.С. Вентцель и др.

Предметом теории массового обслуживания является установление зависимостей между характером потока заявок, числом каналов обслуживания, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами. Задачи теории массового обслуживания носят оптимизационный характер и в конечном итоге включают экономический аспект по определению такого, варианта системы, при котором будет обеспечен минимум суммарных затрат от ожидания обслуживания, потерь времени и ресурсов на обслуживание и от простоев каналов обслуживания.

В коммерческой деятельности применение теории массового обслуживания пока не нашло желаемого распространения.

В основном это связано с трудностью постановки задач, необходимостью глубокого понимания содержания коммерческой деятельности, а также надежного и точного инструментария, позволяющего просчитывать в коммерческой деятельности различные варианты последствий управленческих решений.



Глава I . Постановка задач массового обслуживание

Графы состояний СМО

 

При анализе случайных процессов с дискретными состояниями и непрерывным временем удобно пользоваться вариантом схематичного изображения возможных состояний СMO (рис. 6.2.1) в виде графа с разметкой его возможных фиксированных состояний. Состояния СМО изображаются обычно либо прямоугольниками, либо кружками, а возможные направления переходов из одного состояния в другое ориентированы стрелками, соединяющими эти состояния. Например, размеченный граф состояний одноканальной системы случайного процесса обслуживания в газетном киоске приведен на рис. 1.3.

 

λ

S0  
S2  
S1  
01 λ
S0  
S2  
S1  
12

 

 λ10 λ21

Рис. 1.3. Размеченный граф состояний СМО

 

Система может находиться в одном из трех состояний: S0 -канал свободен, простаивает, S1 — канал занят обслуживанием, S2- канал занят обслуживанием и одна заявка в очереди. Переход системы из состояния S0 в Sl происходит под воздействием простейшего потока заявок интенсивностью λ 01 а из состояния Sl в состояние S0 систему переводит поток обслуживания с интенсивностью λ 01. Граф состояний системы обслуживания с проставленными интенсивностями потоков у стрелок называется размеченным. Поскольку пребывание системы в том или ином состоянии носит вероятностный характер, то вероятность:pi(t) того, что система будет находиться в состоянии Si в момент времени t, называется вероятностью i-го состояния СМО и определяется числом поступивших заявок k на обслуживание.

Случайный процесс, происходящий в системе, заключается в том, что в случайные моменты времени t0, t1, t2,..., tk,..., tn система оказывается в том или другом заранее известном дискретном состоянии последовательно. Такая. случайная последовательность событий называется Марковской цепью, если для каждого шага вероятность перехода из одного состояния St в любое другое Sj не зависит от того, когда и как система перешла в состояние St. Описывается марковская цепь с помощью вероятности состояний, причем они образуют полную группу событий, поэтому их сумма равна единице. Если вероятность перехода не зависит от номера к, то марковская цепь называется однородной. Зная начальное состояние системы обслуживания, можно найти вероятности состояний для любого значения к-числа заявок поступивших на обслуживание.

 

Случайные процессы

 

Переход СМО из одного состояния в другое происходит случайным образом и представляет собой случайный процесс. Работа СМО — случайный процесс с дискретными состояниями, поскольку его возможные состояния во времени можно заранее перечислить. Причем переход из одного состояния в другое, происходит скачкообразно, в случайные моменты времени, по этому он называется процессом с непрерывным временем. Таким образом, работа СМО представляет собой случайный процесс с дискретными состояниями и непрерывным; временем. Например, в процессе обслуживания оптовых покупателей на фирме «Кристалл» в Москве можно фиксировать заранее все возможные состояния простейших. СМО, которые входят в весь цикл, коммерческого обслуживания от момента заключения договора на поставку ликероводочной продукции, ее оплаты, оформления документов, отпуска и получения продукции, догрузки и вывоза со склада готовой продукции.

Из множества разновидностей случайных процессов наибольшее распространение в коммерческой деятельности получили такие процессы, для которых в любой момент времени характеристики процесса в будущем зависят только от его состояния в настоящий момент и не зависят от предыстории — от прошлого. Например, возможность получения с завода «Кристалл» ликероводочной продукции зависит от наличия ее на складе готовой продукции, т.е. его состояния в данный момент, и не зависит от того, когда и как получали и увозили в прошлом эту продукцию другие покупатели.

Такие случайные процессы называются процессами без последствия, или марковскими, в которых при фиксированном настоящем будущее состояние СМО не зависит от прошлого. Случайный процесс, протекающий в системе, называется марковским случайным процессом, или «процессом без последствия», если он обладает следующим свойством: для каждого момента времени t0 вероятность любого состояния t > t0 системы Si, - в будущем (t >tQ) зависит только от ее состояния в настоящем (при t = t0) и не зависит от того, когда и каким образом система пришла в это состояние, т.е. оттого, как развивался процесс в прошлом.

Марковские случайные процессы делятся на два класса: процессы с дискретными и непрерывными состояниями. Процесс с дискретными состояниями возникает в сиcтемах, обладающих только некоторыми фиксированными состояниями, между которыми возможны скачкообразные переходы в некоторые, заранее не известные моменты времени. Рассмотрим пример процесса с дискретными состояниями. В офисе фирмы имеются два телефона. Возможны следующие состояния у этой системы обслуживания: So—телефоны свободны; Sl — один из телефонов занят; S2— оба телефона заняты.

Процесс, протекающий в этой системе, состоит в том, что система случайным образом переходит скачком из одного дискретного состояния в другое.

Процессы с непрерывными состояниями отличаются непрерывным плавным переходом из одного состояния в другое. Эти процессы более характерны для технических устройств, нежели для экономических объектов, где обычно лишь приближенно можно говорить о непрерывности процесса (например, непрерывном расходовании запаса товара), тогда как фактически всегда процесс имеет дискретный характер. Поэтому далее мы будем рассматривать только процессы с дискретными состояниями.

Марковские случайные процессы с дискретными состояниями в свою очередь подразделяются на процессы с дискретным временем и процессы с непрерывным временем. В первом случае переходы из одного состояния в другое происходят только в определенные, заранее фиксированные моменты времени, тогда как в промежутки между этими моментами система сохраняет свое состояние. Во втором случае переход системы из состояния в состояние может происходить в любой случайный момент времени.

На практике процессы с непрерывным временем встречаются значительно чаще, поскольку переходы системы из одного состояния в другое обычно происходят не в какие-то фиксированные моменты времени, а в любые случайные моменты времени.

Для описания процессов с непрерывным временем используется модель в виде так называемой марковской цепи с дискретными состояниями системы, или непрерывной марковской цепью.

 



Уравнения Колмогорова

 

Рассмотрим математическое описание марковского случайного процесса с дискретными состояниями системы So, Sl, S2(см. рис. 6.2.1) и непрерывным временем. Полагаем, что все переходы системы массового обслуживания из состояния Si в состояние Sj происходят под воздействием простейших потоков событий с интенсивностями λij, а обратный переход под воздействием другого потока λij,. Введем обозначение pi как вероятность того, что в момент времени t система находится в состоянии Si. Для любого момента времени t справедливо записать нормировочное условие—сумма вероятностей всех состояний равна 1:

 

 2

Σpi(t)=p0(t)+ p1(t)+ p2(t)=1

 i=0

 

Проведем анализ системы в момент времени t, задав малое приращение времени Δt, и найдем вероятность р1 (t+ Δt) того, что система в момент времени (t+ Δt) будет находиться в состоянии S1 которое достигается разными вариантами:

а) система в момент t с вероятностью p1(t) находилась в состоянии S1 и за малое приращение времени Δt так и не перешла в другое соседнее состояние — ни в S0, ни b S2. Вывести систему из состояния S1 можно суммарным простейшим потоком c интенсивностью (λ1012), поскольку суперпозиция простейших потоков также является простейшим потоком. На этом основании вероятность выхода из состояния S1 за малый промежуток времени Δ t приближенно равна (λ1012)* Δ t. Тогда вероятность невыхода из этого состояния равна [1 -(λ1012)* Δ t].B соответствии с этим вероятность того, что система останется в состоянии Si на основании теоремы умножения вероятностей, равна:

 

p1(t) [1 -(λ1012)* Δ t];

 

б) система находилась в соседнем состоянии So и за малое время Δ t перешла в состояние So Переход системы происходит под воздействием потока λ01 с вероятностью, приближенно равной λ01Δ t

Вероятность того, что система будет находиться в состоянии S1, в этом варианте равна po(t) λ 01 Δ t;

в) система находилась в состоянии S2 и за время Δ t перешла в состояние S1 под воздействием потока интенсивностью λ 21 с вероятностью, приближенно равной λ21Δ t. Вероятность того, что система будет находиться в состоянии S1, равна p2(t) λ21Δ t.

Применяя теорему сложения вероятностей для этих вариантов, получим выражение:

 

p2(t+Δt)= p1(t) [1 -(λ1012)* Δ t]+ po(t) λ 01 Δ t+ p2(t) λ21Δ t ,

 

которое можно записать иначе:

 

p2(t+Δt)- p1(t)/ Δ t= po(t) λ 01+ p2(t) λ21- p1(t) (λ1012) .

 

Переходя к пределу при Δt -> 0, приближенные равенства перейдут в точные, и тогда получим производную первого порядка

 

dp2/dt= p0 λ 01 +p2 λ21 -p11012) ,

 

что является дифференциальным уравнением.

Проводя рассуждения аналогичным образом для всех других состояний системы, получим систему дифференциальных уравнений, которые называются уравнениями А.Н. Колмогорова:

 

dp0 /dt= p1 λ 10 ,

dp1 /dt= p0 λ 01 +p2 λ21 -p11012) ,

dp2 /dt= p1 λ 12 +p2 λ21 .

 

Для составления уравнений Колмогорова существуют общие правила.

Уравнения Колмогорова позволяют вычислить все вероятности состояний СМО Si в функции времени pi(t). В теории случайных процессов показано, что если число состояний системы конечно, а из каждого из них можно перейти в любое другое состояние, то существуют предельные (финальные) вероятности состояний, которые показывают на среднюю относительную величину времени пребывания системы, в этом состоянии. Если предельная вероятность состояния S0 – равна p0 = 0,2, то, следовательно, в среднем 20% времени, или 1/5 рабочего времени, система находится в состоянии So. Например, при отсутствии заявок на обслуживание к = 0, р0 = 0,2,; следовательно, в среднем 2 ч в день система находится в состоянии So и простаивает, если продолжительность рабочего дня составляет 10 ч.

Поскольку предельные вероятности системы постоянны, то заменив в уравнениях Колмогорова соответствующие производные нулевыми значениями, получим систему линейных алгебраических уравнений, описывающих стационарный режим СМО. Такую систему уравнений составляют по размеченному графу состояний СМО по следующим правилам: слева от знака равенства в уравнении стоит предельная вероятность рi рассматриваемого состояния Si умноженная на суммарную интенсивность всех потоков, выводящих (выходящие стрелки) изданного состояния Si систему, а справа от знака равенства — сумма произведений интенсивности всех потоков, входящих (входящие стрелки) в состояние Si систему, на вероятность тех состояний, из которых эти потоки исходят. Для решения подобной системы необходимо добавить еще одно уравнение, определяющее нормировочное условие, поскольку сумма вероятностей всех состояний СМО равна 1: n

 

Σpi(t)=1

 i=1

 

Например, для СМО, имеющей размеченный граф из трех состояний So, S1, S2 рис. 6.2.1, система уравнений Колмогорова, составленная на основе изложенного правила, имеет следующий вид:

 

Для состояния So→ p0 λ 01 = p1 λ 10

Для состояния S1→ p11012) = p0 λ 01 +p2 λ21

Для состояния S2→ p2 λ21 = p1 λ 12

p0 +p1 +p2 =1

dp 4(t) /dt= λ34 p3(t) - λ43 p4(t) ,

p1(t)+ p2(t)+ p3(t)+ p4(t)=1 .

 

К этим уравнениям надо добавить еще начальные условия. Например, если при t = 0 система S находится в состоянии S1, то начальные условия можно записать так:

 

p1(0)=1, p2(0)= p3(0)= p4(0)=0 .

 

Переходы между состояниями СМО происходит под воздействием поступления заявок и их обслуживания. Вероятность перехода в случае, если поток событий простейший, определяется вероятностью появления события в течение времени Δ t, т.е. величиной элемента вероятности перехода λij Δ t, где λij — интенсивность потока событий, переводящих систему из состояния i в состояние i (по соответствующей стрелке на графе состояний).

Если все потоки событий, переводящие систему из одного состояния в другое, простейшие, то процесс, протекающий в системе, будет марковским случайным процессом, т.е. процессом без последствия. В этом случае поведение системы достаточно просто, определяется, если известны интенсивность всех этих простейших потоков событий. Например, если в системе протекает марковский случайный процесс с непрерывным временем, то, записав систему уравнений Колмогорова для вероятностей состояний и проинтегрировав эту систему при заданных начальных условиях, получим все вероятности состояний как функции времени:

 

pi(t), p2(t),…., pn(t) .

 

Во многих случаях на практике оказывается, что вероятности состояний как функции времени ведут себя таким образом, что существует

 

lim pi(t) = pi (i=1,2,…,n) ; t→∞

 

независимо от вида начальных условий. В этом случае говорят, что существуют предельные вероятности состояний системы при t->∞ и в системе устанавливается некоторый предельный стационарный режим. При этом система случайным образом меняет свои, состояния, но каждое из этих состояний осуществляется с некоторой постоянной вероятностью, определяемой средним временем пребывания системы в каждом из состояний.

Вычислить предельные вероятности состояния рi можно, если в системе положить все производные равными 0, поскольку в уравнениях Колмогорова при t-> ∞ зависимость от времени пропадает. Тогда система дифференциальных уравнений превращается в систему Обычных линейных алгебраических уравнений, которая совместно с нормировочным условием позволяет вычислить все предельные вероятности состояний.

 

Заключение

На основе анализа данных табл. 4.5 можно сделать вывод, что по мере увеличения количество касс время ожидания покупателей в очереди растет. А затем после определенного момента резко падает. Характер изменения графика времени ожидания покупателей  понятен, если параллельно рассматривать изменение вероятности потери требований  Вполне очевидно, что когда мощность кассового узла чрезмерно мала, то более 85% покупателей будут уходить необслуженными, а оставшаяся часть покупателей будет обслужена за очень короткое время. Чем больше мощность кассового узла. Тем вероятность потери требований будет уменьшаться и соответственно тем большее число покупателей будет дожидаться своего обслуживания, а значит, и время их ожидания в очереди соответственно будет расти. После того как расчетный узел превысит оптимальный мощность, время ожидания и вероятность потерь будут резко уменьшаться.

Для универсама торговой площадью 650 кв. метров этот предел для зоны обычных касс лежит между 6-8 кассовыми аппаратами. При 7 кассовых аппаратах соответственно среднее время ожидания- 2,66 мин , а вероятность потери заявок очень мало - 0,1 % . Таким образом, задача состоит в выборе такой мощности кассового узла, которая позволит получит минимальные совокупные затраты на массовое обслуживание покупателей.

В связи с этим следующим этапом решения поставленной задачи является оптимизация мощности кассового узла на базе применения моделей СМО разных типов с учетом совокупных затрат и перечисленных выше факторов.

Содержание

 

ВВЕДЕНИЕ

ГЛАВА I. ПОСТАНОВКА ЗАДАЧ МАССОВОГО ОБСЛУЖИВАНИЯ

1.1 Общие понятие теории массового обслуживания

1.2 Моделирование систем массового обслуживания

1.3 Графы состояний СМО

1.4 Случайные процессы

Глава II. УРАВНЕНИЯ, ОПИСЫВАЮЩИЕ СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ

2.1 Уравнения Колмогорова

2.2 Процессы «рождения – гибели»

2.3 Экономико-математическая постановка задач массового обслуживания

Глава III. МОДЕЛИ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ

3.1 Одноканальная СМО с отказами в обслуживании

3.2 Многоканальная СМО с отказами в обслуживании

3.3 Модель многофазной системы обслуживания туристов

3.4 Одноканальная СМО с ограниченной длиной очереди

3.5 Одноканальная СМО с неограниченной очередью

3.6 Многоканальная СМО с ограниченной длиной очереди

3.7 Многоканальная СМО с неограниченной очередью

3.8 Анализ системы массового обслуживания супермаркета

ЗАКЛЮЧЕНИЕ

 



Введение

 

В настоящее время появилось большое количество литературы, посвященной непосредственно теории массового обслуживания, развитию ее математических аспектов, а также различных сфер ее приложения - военной, медицинской, транспортной, торговле, авиации и др.

Теория массового обслуживания опирается на теорию вероятностей и математическую статистику. Первоначальное развитие теории массового обслуживания связано с именем датского ученого А.К. Эрланга(1878-1929),с его трудами в области проектирования и эксплуатации телефонных станций.

Теория массового обслуживания — область прикладной математики, занимающаяся анализом процессов в системах производства, обслуживания, управления, в которых однородные события повторяются многократно, например, на предприятиях бытового обслуживания; в системах приема, переработки и передачи информации; автоматических линиях производства и др. Большой вклад в развитие этой теории внесли российские математики А.Я. Хинчин, Б.В. Гнеденко, А.Н. Колмогоров, Е.С. Вентцель и др.

Предметом теории массового обслуживания является установление зависимостей между характером потока заявок, числом каналов обслуживания, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами. Задачи теории массового обслуживания носят оптимизационный характер и в конечном итоге включают экономический аспект по определению такого, варианта системы, при котором будет обеспечен минимум суммарных затрат от ожидания обслуживания, потерь времени и ресурсов на обслуживание и от простоев каналов обслуживания.

В коммерческой деятельности применение теории массового обслуживания пока не нашло желаемого распространения.

В основном это связано с трудностью постановки задач, необходимостью глубокого понимания содержания коммерческой деятельности, а также надежного и точного инструментария, позволяющего просчитывать в коммерческой деятельности различные варианты последствий управленческих решений.



Глава I . Постановка задач массового обслуживание

Дата: 2019-05-28, просмотров: 243.