1. Ионные каналы - это специальные молекулярные трубочки с порами (дырочками) в мембране, образованные канальными белками, позволяющие ионам проходить через мембрану в обоих направлениях: как внутрь, так и наружу. Ионные каналы могут открываться при определённых условиях, в этом случае они являются управляемыми этими условиями.
2. Транслоказы, - специальные мембранные белки, облегчающие переход вещества через мембрану за счёт своего временного связывания с диффундирующим веществом. Не требуют энергии, работают в обоих направлениях в зависимости от концентрации переносимого вещества.
3. Транспортёры - белковые структуры, насильно протаскивающие определённые вещества сквозь клеточную мембрану в определённом направлении с затратами энергии. Ионные насосы - это транспортёры ионов. По способу использования энергии для своей работы транспортёры можно разделить на "симпортные" и "антипортные". Симпортные транспортёры используют совместный транспорт в одном направлении двух веществ: одно из них должно иметь большую потенциальную энергию для движения через мембрану. Например, симпорт в клетку с помощью ионов натрия глюкозы, или симпорт ионов кальция с помощью ионов натрия. Антипортные транспортёры (обменники) используют встречный транспорт двух веществ с разной потенциальной энергией диффузии. Так работает, например, натрий-калиевый ионный насос.
Механизмы транспорта веществ через мембрану
1. Простая диффузия жирорастворимых (гидрофобных) веществ через жировой слой мембраны. Это пассивный процесс под действием градиента (перепада) концентрации вещества по разные стороны мембраны.
2. Неуправляемая диффузия (неуправляемый пассивный перенос) водорастворимых веществ через постоянно открытые ионные каналы мембраны.
3. Управляемая диффузия (управляемый пассивный перенос) водорастворимых веществ через управляемые ионные каналы мембраны.
4. Активный транспорт водорастворимых веществ с помощью специальных белковых транспортных структур (транспортёров) за счёт использования энергии расщепления АТФ.
АТФазы.
АТФазы разных видов ионов через мембрану. Они переносят их как внутрь клетки, так и, наоборот, наружу.
Название АТФаза означает, что это фермент, нацеленный на расщепление АТФ, его полное название - аденозинтрифосфатаза.
Обнаружено множество различных видов транспортных АТФаз. Они схожи между собой по строению и механизму действия, но имеют разную специализацию, т.е. каждый их вид перетаскивает через мембрану что-то своё. В настоящее время достаточно хорошо изучены Na+/K+-АТФаза, Ca2+-АТФаза, H+-АТФаза, H+,K+-АТФаза, Mg2+-АТФаза, которые обеспечивают перемещение соответственно ионов Na+, K+, Ca2+, H+, Mg2+ изолированно или сопряжённо: например, Na+ сопряжённо с К+; Н+сопряжённо с К+.
Эти ферменты расщепляют АТФ и высвобождают химическую энергию, заключённую в молекулах АТФ. Эта освобождённая энергия тратится тут же на какую-то полезную работу. Транспортные мембранные АТФазы тратят её на доставку определённого вещества на противоположную сторону мембраны «силой». Различные АТФазы, встроенные в мембрану, выполняет функцию переносчиков для различных веществ, и являются, таким образом, молекулярными транспортёрами, «насильно» переносящими вещества сквозь мембрану. Такой перенос называется активным транспортом.
Самой главной мембранной АТФазой по праву можно считать Na,K-АТФазу (натрий-калиевую аденозинтрифосфатазу).
Na,K-АТФаза образует в мембране «ионный натрий-калиевый насос», который разносит по разные стороны мембраны ионы Na+ и K+. Этот насос работает как обменник. На внутренней стороне мембраны активный центр фермента (АТФазы) захватывает 3 иона натрия и выбрасывает их уже на внешней стороне. А выбросив ионы натрия наружу, АТФаза на их место захватывает снаружи 2 иона калия. Затем фермент выворачивается внутрь клетки и перемещает ионы калия на внутреннюю сторону мембраны. Там он отпускает их, а вместо них опять захватывает 3 иона натрия.
При этом следует помнить, что, как истинный фермент, Na,K-АТФаза параллельно расщепляет АТФ, получая от этого энергию на свою транспортную деятельность.
Далее цикл повторяется.
Н+,К+-АТФазы обеспечивают секрецию соляной кислоты париетальными клетками желудка. Они перемещают на наружную сторону мембраны ионы водорода, которые создают кислую среду в желудке. Этот транспорт тоже работает по принципу обменника, т.к. меняет внутриклеточные ионы водорода на внеклеточные ионы калия. Кстати, в мембрану боковой и базальной поверхности этих клеток встроен хлорно-бикарбонатный анионообменник, через который анионы: Cl- вводятся в клетку в обмен на HCO3-
Н+-АТФаза растений обеспечивает поглощение из почвы солей корнями растений. Принцип действия тот же: обмен одних ионов на другие за счёт энергии, полученной из АТФ. Из клеток корня в почву выделяются ионы водорода Н+, а на их место в клетку переносятся ионы солей.
Са2+-АТФаза саркоплазматического ретикулюма в мышечных клетках обеспечивает транспорт кальция из цитоплазмы мышечных клеток во внутриклеточные цистерны для депонирования (запасания) кальция.
Транспортёры глюкозы.
Глюкозные транспортёры - это белки, переносящие глюкозу через мембрану. Их называют белками-переносчиками, а также рецепторами глюкозы. Эти белки образуют гидрофильные трансмембранные каналы.
Глюкозные транспортеры делятся на две группы.
1. Na+-глюкозные ко-транспортёры (симпортёры). Эти транспортёры занимаются активным транспортом глюкозы с помощью ионов Na+ и их работа зависит от градиента концентрации натрия. Они работают только в почечных канальцах и кишечнике, обеспечивая всасывание глюкозы против градиента её концентрации.
2. Транспортные белки семейства ГЛЮТ. Они отличаются от сходных по функции белков, транспортирующих глюкозу через мембрану в кишечнике и почках, и обеспечивают облегчённую диффузию, а не активный транспорт. Белки ГЛЮТ обнаружены во всех тканях и их существует несколько разновидностей.
Все 5 типов ГЛЮТ имеют сходную первичную структуру и доменную организацию.
· ГЛЮТ-1 (эритроцитарный тип) обеспечивает стабильный поток глюкозы в глиальные клетки мозга.
· ГЛЮТ-2 (печёночный тип) обнаружен в клетках органов, выделяющих глюкозу в кровь. Именно при участии ГЛЮТ-2 глюкоза переходит в кровь из энтероцитов и печени. ГЛЮТ-2 участвует в транспорте глюкозы в β-клетки поджелудочной железы. В то же время ГЛЮТ-2 обеспечивает проникновение глюкозы из крови в клетки печени (гепатоциты) по механизму облегчённой диффузии. Там глюкоза превращается в активное вещество глюкозо-6-фосфат, участвующее в обмене углеводов, жиров и в энергообмене.
· ГЛЮТ-3 (мозговой тип) обладает большим, чем ГЛЮТ-1, сродством к глюкозе. Он также обеспечивает постоянный приток глюкозы к клеткам нервной и других тканей.
· ГЛЮТ-4 (мышечно-жировой тип) - главный переносчик глюкозы в клетки мышц и жировой ткани. Это единственный переносчик, регулируемый инсулином, поэтому мышцы и жировую ткань называют инсулинзависимыми тканями.
· ГЛЮТ-5 (кишечный тип) встречается, главным образом, в клетках тонкого кишечника.
Дата: 2019-03-05, просмотров: 113.