С помощью криволинейных интегралов вычисляются
Рассмотрим эти приложения более подробно с примерами.
Масса кривой
Предположим, что кусок проволоки описывается некоторой пространственной кривой C. Пусть масса распределена вдоль этой кривой с плотностью ρ (x,y,z). Тогда общая масса кривой выражается через криволинейный интеграл первого рода
Если кривая C задана в параметрическом виде с помощью векторной функции , то ее масса описывается формулой
В случае плоской кривой, заданной в плоскости Oxy, масса определяется как
или в параметрической форме
Центр масс и моменты инерции кривой
Пусть снова кусок проволоки описывается некоторой кривой C, а распределение массы вдоль кривой задано непрерывной функцией плотности ρ (x,y,z). Тогда координаты центра масс кривой определяются формулами
где
− так называемые моменты первого порядка.
Моменты инерции относительно осей Ox, Oy и Oz определяются формулами
Работа поля
Работа при перемещении тела в силовом поле вдоль кривой C выражается через криволинейный интеграл второго рода
где − сила, действующая на тело, − единичный касательный вектор (рисунок 1). Обозначение означает скалярное произведение векторов и .
Заметим, что силовое поле не обязательно является причиной движения тела. Тело может двигаться под действием другой силы. В таком случае работа силы иногда может оказаться отрицательной.
Если векторное поля задано в координатной форме в виде
то работа поля вычисляется по формуле
В частном случае, когда тело двигается вдоль плоской кривой C в плоскости Oxy, справедлива формула
Где
Если траектория движения C определена через параметр t (t часто означает время), то формула для вычисления работы принимает вид
где t изменяется в интервале от α до β. Если векторное поле потенциально, то работа по перемещению тела из точки A в точку B выражается формулой
где − потенциал поля.
Рис.1 | Рис.2 |
Закон Ампера
Криволинейный интеграл от магнитного поля с индукцией вдоль замкнутого контура C пропорционален полному току, протекающему через область, ограниченную контуром C (рисунок 2). Это выражается формулой
где - магнитная проницаемость ваккуума, равная Н/м.
Закон Фарадея
Электродвижущая сила ε, наведенная в замкнутом контуре C, равна скорости изменения магнитного потока ψ, проходящего через данный контур (рисунок 3).
Рис.3 |
Пример
Определить массу проволоки, имеющей форму отрезка от точки A(1,1) до B(2,4). Масса распределена вдоль отрезка с плотностью .
Решение. Составим сначала параметрическое уравнение прямой AB.
где параметр t изменяется в интервале [0,1]. Тогда масса проволоки равна
Формула грина
Формула Грина устанавливает связь между двойным интегралом по области и криволинейным интегралом по контуру , ограничивающему эту область. Будем считать, что область является стандартной в направлении каждой координатной оси и снизу ограничена графиком функции (дугой ), сверху — графиком функции (дугой ), которые вместе составляют замкнутый контур .
Пусть в области и на ее границе заданы функции и непрерывные вместе со своими частными производными , ,тогда
,
где обход контура совершается в положительном направлении, т. е. против часовой стрелки (область остается слева). Следовательно,
. (1)
Аналогично получаем
, (2)
где обход контура также совершается в положительном направлении.
Вычитая почленно (1) из (2), получаем формулу Грина
.
Замечание 1.Если обход контура совершается в отрицательном направлении, т. е. по часовой стрелке (область остается справа), то формула Грина принимает вид
.
Замечание 2.Формула Грина дает возможность вычислять площадь области с помощью криволинейного интеграла. Действительно, если , , то формула Грина перепишется так:
,
откуда
, (3)
где обход контура совершается против часовой стрелки.
Пример. Определить с помощью криволинейного интеграла площадь, ограниченную эллипсом с полуосями и .
Решение.Запишем параметрические уравнения эллипса
.
Тогда
И по формуле (3) получим
.
Дата: 2019-03-05, просмотров: 218.