Исходя из изложенного о пределе интегральных сумм, криволинейный интеграл второго рода записывается так:
.
В случае криволинейного интеграла второго рода при перемене местами начала и конца отрезка кривой знак интеграла меняется:
.
При составлении интегральной суммы криволинейного интеграла второго рода значения функции fi(ζi; ηi) можно умножать также на проекции частей отрезка кривой на ось Oy. Тогда получим интеграл
.
На практике обычно используется объединение криволинейных интегралов второго рода, то есть две функции f = P(x, y) и f = Q(x, y) и интегралы
,
а сумма этих интегралов
называется общим криволинейным интегралом второго рода
Геометрические и физические приложения криволинейных интегралов
Криволинейные интегралы имеют многочисленные приложения в математике, физике и прикладных расчетах. В частности, с их помощью вычисляются
Длина кривой
Пусть C является гладкой, кусочно-непрерывной кривой, которая описывается вектором . Длина данной кривой выражается следующим криволинейным интегралом
где − производная, а − компоненты векторной функции .
Если кривая C задана в плоскости, то ее длина выражается формулой
Если кривая C представляет собой график заданной явно, непрерывной и дифференцируемой функции в плоскости Oxy, то длина такой кривой вычисляется по формуле
Наконец, если кривая C задана в полярных координатах уравнением , и функция является непрерывной и дифференцируемой в интервале , то длина кривой определяется выражением
Площадь области, ограниченной замкнутой кривой
Пусть C является гладкой, кусочно-непрерывной и замкнутой кривой, заданной в плоскости Oxy (рисунок 1). Тогда площадь области R, ограниченной данной кривой, определяется формулами
Здесь предполагается, что обход кривой C производится против часовой стрелки.
Если замкнутая кривая C задана в параметрическом виде , то площадь соответствующей области равна
Рис.1 | Рис.2 |
Объем тела, образованного вращением замкнутой кривой относительно оси Ox
Предположим, что область R расположена в верхней полуплоскости y ≥ 0 и ограничена гладкой, кусочно-непрерывной и замкнутой кривой C, обход которой осуществляется против часовой стрелки. В результате вращения области R вокруг оси Ox образуется тело Ω (рисунок 2). Объем данного тела определяется формулами
Дата: 2019-03-05, просмотров: 210.