Классификация сплавов. Железо и его сплавы
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Сталь – это сплав железа с углеродом и другими элементами, содержащий до 2,14 % углерода. Углерод – важнейшая примесь стали. От его содержания зависят прочность, твердость и пластичность стали. Кроме железа и углерода, в состав стали входят кремний, марганец, сера и фосфор. Эти примеси попадают в сталь в процессе выплавки и являются ее неизбежными спутниками.

Чугун – сплав на железной основе. Отличие чугуна от стали заключается в более высоком содержании в нем углерода – более 2,14 %. Наибольшее распространение получили чугуны, содержащие 3–3,5 % углерода. В состав чугунов входят те же примеси, что и в стали, т. е. кремний, марганец, сера и фосфор. Чугуны, у которых весь углерод находится в химическом соединении с железом, называют белыми (по виду излома), а чугуны, весь углерод которых или большая его часть представляет графит, получили название серых. В белых чугунах всегда имеется еще одна структурная составляющая – ледебурит. Это эвтектика, т. е. равномерная механическая смесь зерен аустенита и цементита, получающаяся в процессе кристаллизации, в ней 4,3 % углерода. Ледебурит образуется при температуре +1147 °C.

Феррит – твердый раствор небольшого количества углерода (до 0,04 %) и других примесей в – железе. Практически это чистое железо. Цементит – химическое соединение железа с углеродом – карбид железа.

Перлит – равномерная механическая смесь в сплаве феррита и цементита. Такое название эта смесь получила потому, что шлиф при ее травлении имеет перламутровый оттенок. Так как перлит образуется в результате процессов вторичной кристаллизации, его называют эвтектоидом. Он образуется при температуре +727 °C. В нем содержится 0,8 % углерода.

Перлит имеет две разновидности. Если цементит в нем расположен в виде пластинок, его называют пластинчатым, если же цементит расположен в виде зерен, перлит называют зернистым. Под микроскопом пластинки цементита кажутся блестящими, потому что обладают большой твердостью, хорошо полируются и при травлении кислотами разъедаются меньше, чем пластинки мягкого феррита.

Если железоуглеродистые сплавы нагреть до определенных температур, произойдет аллотропическое превращение —железа в —железо и образуется структурная составляющая, которая называется аустенитом.

Аустенит представляет собой твердый раствор углерода (до 2,14 %) и других примесей в  — железе. Способность углерода

растворяться в железе неодинакова при различных температурах. При температуре +727 °C  — железо может растворять не более 0,8 % углерода. При этой же температуре происходит распад аустенита с образованием перлита. Аустенит – мягкая структурная составляющая. Он отличается большой пластичностью, не обладает магнитными свойствами.

При изучении структурных составляющих железоуглеродистых сплавов установлено, что они при комнатной температуре всегда состоят из двух структурных элементов: мягкого пластичного феррита и твердого цементита, упрочняющего сплав.

Диаграммы состояния сплавов

Сплавы можно получать при соединении большинства металлов друг с другом, а также с неметаллами. Диаграммы состояния сплавов дают наглядное представление о протекающих в сплавах превращениях в зависимости от их химического состава и температуры.

При построении диаграмм состояния сплавов на оси абсцисс указывают химический состав или концентрацию сплава в процентах. Для этого горизонтальную линию определенной длины делят на сто одинаковых частей и каждое деление принимают за 1 % одного из компонентов сплава.


 

Рис. 5. Диаграмма состояния сплавов системы свинец—сурьма (Pb—Sb)

Точка А соответствует чистому свинцу, а точка В – чистой сурьме. По оси ординат в определенном масштабе указывают температуру. Для того чтобы построить диаграмму состояния сплавов, сначала строят ряд кривых охлаждения сплавов одних и тех же элементов с различной концентрацией.

На основе этих кривых строят диаграмму. Сплавы, компоненты которых при затвердевании образуют только механические смеси, относятся к первой группе. Диаграмма этих сплавов условно называется диаграммой состояния первого рода. Диаграмма сплавов, образующих при затвердевании только твердые растворы, называется диаграммой состояния второго рода. Наиболее типичными для диаграмм первого рода являются сплавы свинца с сурьмой.

Построение диаграммы (первого рода) состояния сплавов Pb—Sb:

1) кривые охлаждения доэвтектических сплавов;

2) диаграмма состояния сплавов Pb—Sb;

3) кривые охлаждения заэвтектических сплавов. Диаграмма построена для пяти видов сплава свинца с сурьмой:

1) 5 % сурьмы и 95 % свинца;

2) 10 % сурьмы и 90 % свинца;

3) 20 % сурьмы и 80 % свинца;

4) 40 % сурьмы и 60 % свинца;

5) 80 % сурьмы и 20 % свинца.

Все они имеют две критические температуры: верхнюю и нижнюю. Изучение процессов кристаллизации этих сплавов показывает, что верхняя критическая температура соответствует началу, а нижняя – концу затвердевания сплава. Таким образом, процесс кристаллизации сплавов Pb—Sb резко отличается от кристаллизации чистых металлов. Сплавы кристаллизуются в интервале температур, а чистые металлы – при постоянной температуре.

Механическая смесь кристаллов, выделяющихся из жидкого сплава одновременно, называется эвтектикой (в переводе с греческого – «хорошо сложенный»). Сплавы указанной концентрации называют эвтектическими. Линия АСВ на диаграмме называется линией ликвидуса (в переводе с греческого – «жидкий»). Выше этой линии любой сплав свинца с сурьмой находится в жидком состоянии. Линия ДСВЕ получила название линии солидуса (в переводе с греческого – «твердый»), или эвтектической линии. Точка С показывает состав эвтектики. Сплавы, расположенные левее этой точки, называют доэвтектическими, правее ее – заэвтектическими. В структуре доэвтектических сплавов, кроме эвтектики, всегда есть некоторое количество свинца, а в заэвтектических, кроме эвтектики, – сурьмы.

 

ТЕСТЫ

1. Масса единицы объема материала в естественном состоянии — вместе с порами и пустотами – это:
А) пористость
Б) плотность
В) средняя плотность
Г) истинная плотность

2. — это степень заполнения объема материала порами, содержание пор в материале.
А) насыпная плотность
Б) пористость
В) водопоглощение
Г) объем

3. Водопоглощение измеряется в…
А) кг
Б) м3
В) %
Г) нет правильного ответа

4. Коэффициент насыщения может изменяться от…до…:
А) 0 до 0,2
Б) 0 до 1
В) 1 до 5
Г) 3 до 4

5. Каким коэффициентом характеризуется водостойкость?
А) размягчения
Б) критическим
В) нулевым
Г) водопроникаемости

6. Какие материалы более морозостойкие, чем пористые?
А) водопоглощаемые
Б) проводящие тепло
В) задерживающие теплоту
Г) плотные

7. К волокнистым материалам можно отнести:
А) пенопласт
Б) пластик
В) дерево
Г) бетон

8. Какой из перечисленных материалов при высокой температуре деформируется?
А) сталь
Б) торф
В) гранит
Г) мрамор

9. — способность материала сопротивляться проникновению в него другого твердого материала.
А) сопротивляемость
Б) твердость
В) напряжение
Г) прочность

10. Научное название шкалы твердости материалов?
А) шкала Фаренгейта
Б) шкала Рихтера
В) шкала Мооса
Г) шкала Бофорта

11. Способность материала сопротивляться разрушительному действию водных растворов щелочей – это:
А) кислотостойкость
Б) теплостойкость
В) токсичность
Г) щелочестойкость

12. – это способность материала приобретать заданную форму вследствие различных механических воздействий.
А) плавкость
Б) формуемость
В) полируемость
Г) слеживаемость

13. Сколько % кислорода в земной коре?
А) около 6
Б) около 44
В) около 47
Г) до 86

14. Сколько % железа в земной коре?
А) около 5
Б) до 71
В) около 8
Г) нет верного ответа

15. Халцедон это модификация
А) оксида алюминия
Б) оксида железа
В) оксида калия
Г) оксида кремния

16. Другое название аморфного кремнезема:
А) кварцевое стекло
Б) халцедон
В) опал
Г) каолинит

17. Двойная углекислая соль кальция и магния — это:
А) ангидрид
Б) доломит
В) магнезит
Г) гипс

18. Другое название магматических горных пород?
А) кремнеземные
Б) глубинные

В) кристаллизационные
Г) ионные

 

19. Известковые туфы относят к … химическим осадкам
А) сульфатным
Б) сульфитным
В) карбонатным
Г) хлористым

20. – это обкатанные обломки горных пород
А) булыжник
Б) плиты
В) бутовый камень
Г) мел

21. К осколочным горным породам относят:
А) вулканический пепел
Б) гранит
В) диорит
Г) гравий

22. К метаморфическим горным породам принято относить:
А) спонголит
Б) кварцит
В) гипс
Г) лес

23. — это уменьшение линейных размеров и объема изделия при высушивании
А) пластичность
Б) воздушная усадка
В) общая усадка
Г) глазурь

24. Витринное стекло выпускают толщиной:
А) 2-10 см
Б) 5-12 см
В) 5-12 мм
Г) до 13 мм

25. Другое название многослойного стекла
А) диплекс
Б) триплекс
В) закаленное
Г) стемалит

26. Существует ли жидкое (растворимое стекло)?
А) да
Б) нет
В) только в теории
Г) нет правильного варианта

27. Время быстрогасимой извести:
А) до 6 минут
Б) до 5 минут
В) до 8 минут
Г) до 10 минут

28. Основной минерал клинкера, обеспечивает быстрое затвердевания и нарастание прочности портландцемента — это:
А) билит
Б) алит
В) алюминат
Г) силикат

29. Цементы заводского помола имеют тонкость помола … м2 / кг.
А) 200 – 300
Б) 250-300
В) 340 – 400
Г) 320 – 380

30. Какой портландцемент предназначен для цементирования (бетонирования) скважин?
А) дорожный
Б) гидрофобный
В) пластифицированный
Г) тампонажный

31. Заполнители применяются для
A) уменьшения расхода вяжущего
Б) образования своего рода скелета в затвердевшем растворе
В) оба этих фактора

32. Для удаления глины из песка применяют
А) вращающиеся барабаны
Б) виброгрохоты
В) пескомоечные машины

33. Для разделения заполнителей на фракции применяют

А) вибросита или виброгрохоты
Б) щёковые дробилки
В) конусные дробилки

 

34.Какой из материалов не является заполнителем
А) щебень
Б) песок
В) цемент

35. Какой заполнитель получают из глины
А) керамзит
Б) пемза
В) туф

36.Какой заполнитель является тяжелым
А) песок
Б) керамзитовый песок
В) вулкинический туф

37.Строительным раствором называется
А) рационально подобранная смесь мелкого заполнителя и воды
Б) составленная в определённой пропорции смесь неорганического вяжущего, мелкого заполнителя, воды и добавок
В) составленная в определённой пропорции смесь неорганического вяжущего и мелкого заполнителя

38.Растворы твердеющие в воде или влажных условиях, а так же на воздухе
А) Гидравлические
Б) Декоративные
В) Автоклавного твердения

39.Какое свойство растворов является основным:
А) прочность
Б) подвижность
В) оба перечисленных свойства

40.Какой из растворов будет сложным:
А) цементный
Б) известково-цементный
В) известковый

41.Жирный строительный раствор содержит
А) небольшое количество вяжущего
Б) нормальное количество вяжущего
В) избыточное количество вяжущего

42.Подвижность растворов определяется
А) мастерком
Б) осадкой конуса
В) лопаткой

43.Акустические растворы применяются для
А) устройства гидроизоляционного слоя
Б) устройства звукопоглощающих штукатурок
В) заполнения швов между элементами жбк

44 В какой зоне изгибаемой железобетонной конструкции следует располагать стальную рабочую арматуру?
А) В любой.
Б) Посередине толщины.
В) В растянутой зоне.
Г) В сжатой зоне.

45 С какой целью создается предварительное напряжение арматуры в железобетонных конструкциях?
А) Сокращение расхода материала
Б) Чтобы снизить вероятность трещинообразования в бетоне от растягивающих напряжений.
В) Уменьшение объема и веса конструкции
Г) Все перечисленное

46 Кто первым запатентовал применение железобетона:
1) Ж. Лямбо;
2) Б. Паскаль;
3) Кулибин в России;
4) садовник Ж. Монье во Франции

47 К какому виду относятся бетоны при плотности
р = 2200-2500 кг/м 3 :
А) мелкозернистые и лёгкие бетоны
Б) тяжёлые
В) средним и лёгким бетонам

48 Что понимается под классом бетона В:
А) предел прочности на изгиб;
Б) коэффициент продольного изгиба;
В) стандартная кубиковая прочность бетона, кг/см2 , с обеспеченностью 95%?

49 Какой материал используется в качестве арматуры при изготовлении жбк?
1) чугун гладкий и периодического профиля;
2) арматурные стали гладкие и периодического профиля;
3) алюминий различного профиля;

50 При какой высоте сечения ЖБК допускается проектировать без установки верхней и поперечной арматуры
А) Более 300 мм
Б) До 150 мм
В) При любой

51 Может ли ЖБК изготавливаться непосредственно на строительной площадке
А) Нет
Б) Да

52 Какой срок набора марочной прочности бетона при нормальных условиях твердения
А)3 дня
Б)2 сут
В) 28 сут

53 Основные компоненты для производства Портландцемента
А) Песок и глина
Б) Известняк и глина
В) Гипс и песок

 

СПИСОК ЛИТЕРАТУРЫ

1. Иванов Н.Н. Выбор типа и способа подбора асфальтобетона. -В кн.: Доклады по вопросам строительства черных дорог. - М.-Л.: ОГИЗ Гострансиздат, 1932.

2. Aquide to the structural design of bituminous-surfaced roads in tropical and subtropical countries: Road Note 31 / HMSO. - London, 1977.

3. Гельмер В.О. Асфальтобетон. - Харьков: ДНТВУ, 1936.

4. Superpave Mix Design. Asphalt Institute Superpave Series № 2 (SP-2), 1996 Printing. - 1996.

5. Пособие по строительству асфальтобетонных покрытий и оснований автомобильных дорог и аэродромов (к СНиП 3.06.03-85 иСЫиП 3.06.06-88)/ Союздорнии. - М., 1991.

6. Иванов Н.Н. Черные дороги. - М.: ОГИЗ Гострансиздат, 1931.

7. Кицера А.А., Гельмер B.C. Асфальтобетонные дорожные покрытия. - Харьков: ДНТВУ, 1934.

8. Takemi Inoue, Yasuo Gunji, Hirokazu Akagi. Rational design method of hot mix asphalt based on calculated VMA / Eurasphalt & Eurobitume Congress. - Vienna, 2004.

9. Предложения по оптимизации состава дорожных асфальтобетонов / СибАДИ. - Омск, 1981.

10. Методические рекомендации по повышению деформативности и морозостойкости асфальтобетонных покрытий при низких температурах (до минус 50°С)/Союздорнии. - М,, 1990.

11. Горелышев Н.В. Асфальтобетон и другие битумомине-ральные материалы:Учеб. пособие. - М.: Можайск-Терра, 1995.

12. Охотин В.В. Лабораторные опыты по составлению дорожных грунтовых смесей по принципу наименьшей пористости. - М.: Транспечать, 1929.

13. Авласова Н.М., Горелышев Н.В. Гранулометрический состав минерального остова асфальтобетона //Информ. об огеч. и заруб, дор.технике. - 1959. - № 2.

14. Сахаров П.В. Способы проектирования асфальтобетонных смесей // Транспорт и дороги города. -1935. - № 12.

15. Боженов П.И. О формировании технических характеристик полидисперсных искусственных материалов // Строит, материалы, - 1992.- №4.

16. Иванов Н.Н. Подбор наиболее плотной смеси каменных агрегатов или грунтов для дорожных одежд// Дорога и автомобиль. - 1930. - № 4-5.

17. Рекомендации по устройству дорожных покрытий с шероховатой поверхностью / Союздорнии. - М., 1965.

18. Горелышев Н.В., Лобзова К.Я. Некоторые результаты опытного устройства покрытий с шероховатой поверхностью// Автомоб. дороги. - 1964. - № 3.

19. Гезенцвей Л.Б. Асфальтовый бетон. - М.: Изд-во литературы по стр-ву, 1964.

20. Рыбьев И.А. Асфальтовые бетоны. - М.: Высш. шк., 1969.

21. Строительство дорог в Московской области, Москве и Харькове в 1930 г. Кн. III. Асфальтобетон / Под ред. Г.Д. Дубелира. - М.: ОГИЗ Гострансиздат, 193 1.

22. Huber G.A., Corte J.F., Laglois P. The effect of mix design technology on he rutting characteristics of asphalt pavements: Ninth International Conference on Asphalt Pavements, August 17-22, 2002. - Denmark, 2002.

23. Королев И.В. Пути экономии битума в дорожном строительстве. - М.: Транспорт, 1986.

24. Котлярский Э.В. Строительно-технические свойства дорожного асфальтового бетона: Учеб. пособие. - М.: МАДИ (ГТУ), 2004.

25. Кирюхин Г.Н. Проектирование асфальтобетона по показателям сдвигоустойчивости и трещиностойкости в покрытии// Юбилейн. вып. - М., 2002. - (Сб. науч. тр. /ФГУП «Союздорнии»).

26. The Asphalt Handbook:MS-4/ Asphalt Institute. - 1989.

27. Designing Stone Matrix Asphalt (SMA) / AASHTO Designation: PP 41-02. - 2004.

28. Финские нормы на асфальт 2000/ Совещательная комиссия по покрытиям. - Хельсинки: Изд-во PAN К гу, 2000.

29. Superpave performance Graded Asphalt Binder Specification and Testing. Сер. Superpave Series N1 (SP-1)/ Asphalt Institute.- 1997.

30. NCHRP Report 465. Simple Performance Test for Superpave Mix Design / National Academy Press. Washington D.C. - 2002.

31. D 4867/ D4867M-96. Standard Test Method for Effect of Moisture on Asphalt Concrete Paving Mixtures. - 1996.

32. ВаренькоВ.А. Дорожные композитные материалы. Структура и механические свойства. - Минск: Наука и техника, 1993.

33. Гезенцвей Л.Б. Дорожный асфальтовый бетон. - М.: Минкомхоз, 1960.

34. Сюньи Г.К. Дорожный асфальтовый бетон. - Киев, 1962.

35. Золотарев В.А. О взаимосвязи реологических свойств битумов и асфальтобетонов // Наука и техника в дор. отрасли. - 2002.-№ 4.

36. PrEN 12697-26. Test methods for hot mix asphalt-Determination of Stiffness. - 1999.

37. ASTM D 3497. Standard Test Method for Dynamic Modulus of Asphalt Concrete Mixtures. - 1979,

38. Molenaar A.A. Der praktische Nutzen rheologischcr Priifungen von Bitumen// Bitumen, - 1996. -№1.

39. Золотарев В.А. Долговечность дорожных асфальтобетонов. - Харьков: Высш. шк., 1977.

40. Богуславский A.M., Богуславский Л.А. Основы реологии асфальтобетона. - М.: Высш. шк., 1972.

41. СТБ 1033-96. Стандарт Белоруссии. Смеси асфальтобетонные дорожные, аэродромные и асфальтобетон. Технические условия. - Минск, 1996.

42. Рекомендации по выявлению и устранению колей на нежестких дорожных одеждах: ОДМД / Минтранс России, Гос. служба дор. хоз-ва (Росавтодор). - М.: ГП «Информавтодор», 2002.

43. Huschek S. Der Kriechversuch Ein anfaches Mittel zur Beurteilung der plastishen Verformbarkeit von Asphaltmischungen// Strasse und Verker. - 1976. - № 4.

44. Носков В.Н. Исследование деформационной устойчивости асфальтобетона при статическом и циклическом загружении с различным режимом в условиях повышенных температур: Дисс. ... канд. техн. наук. Омск, 1974.

45. Бонченко Г.А. Асфальтобетон. Сдвигоустойчивость и технология модифицирования полимером. - М.: Машиностроение, 1994.

46. Инструкция по строительству дорожных асфальтобетонных покрытий в г, Москве: ВСН 175-82 / НИИ Мосстрой. -М.: Тип. Главмосстроя, 1982.

47. Еремин А.В. Эксплуатационно-прочностные свойства шлаковых асфальтобетонных покрытий автомобильных дорог: Автореф. дисс. ... канд. техн. наук. - Воронеж, 2000.

48. Еремин В.Г., Еремин А.В., Волокитин В.П. Результаты исследования деформационно-прочностных свойств асфальтобетона методом вдавливания сферического штампа //Науч. Вестник Воронеж, гос. архит.-строит, ун-та. Сер. Дор.-трансп. стр-во. - 2003. -№ 1.

49. Таращанский Е.Г., Губач Л.С, Носков В.Н. Вопросы прочности и устойчивости дорожных асфальтобетонов при повышенных эксплуатационных температурах. - В кн.: Материалы V всесоюз. науч.-техн. совещания по основным проблемам техн. прогресса в дор. стр-ве. - М., 1971.

50. Кирюхин Г.Н. Исследование влияния качества битумов на работоспособность асфальтобетонных покрытий: Автореф. дисс. ... канд. техн. наук. -М., 1982.

51. Волков М.И., Штауб К.И., Гельмер В.О. Дорожные строительные материалы. - М.-Л.: Наркомхоз РСФСР, 1939.

52. Ладыгин Б.И. Основы прочности и долговечности дорожных бетонов. - Минск: МВСС и ПО БССР, 1963.

53. Новый эффективный способ оценки сдвигоустойчивости асфальтобетона / Ю.Е. Никольский, Б.С. Гмыря, Л.С. Губач, Г.Б. Старков // Автомоб. дороги. - 1992. - № 11-12.

54. Методические рекомендации по оценке сдвигоустойчивости асфальтобетона /Минтранс России, Гос. служба дор. хоз-ва (Росавтодор). - М.: ГП «Ииформавтодор», 2002.

55. Инструкция по проектированию дорожных одежд нежесткого типа: ВСН 46-83/ Минтрансстрой СССР. - М.: Транспорт, 1985.

56. Предложения по методам определения деформативной устойчивости асфальтобетонных и других черных покрытий при положительных и отрицательных температурах / Союздорнии. - М. 1969.

57. Страгис В.И. Обоснование требований к сдвигоустойчивости асфальтобетона применительно к местным условиям Литовской ССР: Автореф. дисс.... канд. техн. наук. - Каунас, 1974.

58. Баловнева И.И. К вопросу сопротивляемости асфальтобетона сдвигу: Сб.тр. /Союздорнии. - М., 1967.

59. Collins R., Lynn С. Performance related testing with the asphalt pavement analyzer. BCRA'98 Tfondhem. Vol 11. - Norway, 1998.

60. Heavy Duty Surfaces: The arguments for SMA. - EAPA, 1998.

61. Uiffigren Nils. Performance requirements on asphalt mixtures/ layers in asphalt contracts: Ninth International Conference on Asphalt Pavements, August I 7-22, 2002 / The Danish Road Directorate, Ministry of Transport. - Copenhagen, 2002. - Vol. 2.

62. Schroder I., Kluge H.J. Erfarungen mit Splittmastixasphalt// Bitumen.- 1992.-№4.

63. Проектирование нежестких дорожных одежд: ОДН 218.046-01/ Гос. служба дор. хоз-ва Минтранса России. - М.: ГП «Ииформавтодор», 2001.

64. Кирюхин Г.Н. Остаточные деформации в асфальтобетонных покрытиях / Наука и техника в дор. отрасли.- 1998. - №3.

65. Иванов Н.Н. Строительство автомобильных дорог. Ч. 2: Artoiранен, лит. - М., 1957.

66. Авласова Н.М. Строительство дорожных покрытий из асфальтобетонных смесей с минеральным составом прерывистой гранулометрии: Автореф. дисс. ... канд. техн. наук. - М., 1969.

67. Казарновская Э.А. К вопросу о характеристиках прочности асфальтобетона. - В кн.: Докл. и сообщ. на науч.-техн. совещ. по стр-ву автомоб. дорог. - М., 1963.

68. Любимова Т.Ю., Марготьев А.Н., Агапова Р.А. Исследование прочностных и деформативных свойств грунтов, укрепленных вяжущими материалами. - В кн.: Докл. и сообщ. на науч.-техн. совещ. по стр-ву автомоб. дорог. - М., 1963.

69. Арлен Ж.П., Уброон Ж., Малле Т. Новый подход к сравнению результатов испытаний по методу Дюрьеза и Маршалла // Revue Generate des Routes et des Aerodromes. - 1982. - № 588.

70. Казарновский В.Д. Оценка сдвигоустойчивости связных грунтов в дорожном строительстве. - М.: Транспорт, 1985.

71. Троицкая M.II. Определение сопротивления грунтов сдвигу: Метод, пособие. - М.-Л.: Госгеолиздат, 1940.

72. Кирюхин Г.Н. Сдвигоустойчивость асфальтобетона в покрытиях дорог // Вопросы проектирования и стр-ва автомоб. дорог.- М., 1993.-(Сб. тр./Союздорнии).

73. Рейнер М. Десять лекций по теоретической реологии. -М.-Л.: Гостехиздат, 1947.

74. Федосеев В.И. Сопротивление материалов. - М.:Наука. 1970.

75. СТП 007-97. Метод испытания асфальтобетона на устойчивость к колееобразованию / Корпорация «Трансстрой». - М., 1998.

76. Ганжула Д.И. Требования к асфальтобетонным покрытиям, работающим при высоких температурах: Автореф. дисс. ... канд. техн. наук. - М., 1955.

77. Haas R.C.G. A method for designing asphalt pavements to minimize low-temperature shrinkage erasing // The Asphalt lnst. Res. Rep. - 1973, Janvier.

78. Кубо X. Разрушение асфальтобетонных покрытий под действием температурных напряжений: Пер. с япон.// Доро кэнсэцу. -1980.-№390.

79. Arand W. Zum Einfluss tiefer Temperaturen auf das Ermiidungsverhalten von Asphalten //Strasse und Autobahn. - 1983. -№ 10.

80. Мозговой В.В. Оценка температурной трещиностойкости асфальте- и дегтебетонов в покрытиях автомобильных дорог: Автореф. дисс. ... канд. техн. наук. - Харьков, 1986.

81. Руденский А.В. Обеспечение эксплуатационной надежности дорожных асфальтобетонных покрытий. - М.: Транспорт, 1975.

82. Распопов Н.М. Исследование морозоустойчивости асфальтового бетона. - В кн.: Исслед. органич. вяжущих материалов и физ.-мех. свойств асфальтобетон, смесей. ~ М., 1949.

83. Печеный Б.Г. Битумы и битумные композиции. - М.: Химия, 1990.

84. Al-Khateeb G.G., Buttlar W.G. Evaluating tensile strength of asphallic paving mixtures using a hollow-cylinder tensile tester: ISAP. -Copenhagen, 2002.

85. Железко Е.П. Влияние качества битумов на прочностные и деформационные свойства битумоминеральных материалов.: Автореф. дисс. ... канд. техн. наук. -Уфа, 1975.

86. Руденский А.В., Руденская И.М. Реологические свойства битумоминеральных материалов. - М.: Высш. шк., 1971.

87. Рыбьев И.А. Опыт построения структурной теории прочности и деформационной устойчивости асфальтобетона:Сб. науч.тр. / МАДИ. - М, 1958. - Вып. 23.

88. Рейнер М. Реология. - М.: Наука, 1965.

89. Ладыгин Б.И., Яцевич И.К. Оценка трещиноустойчивости асфальтобетона// Автомоб. дороги. - 1966. - №10.

90. Кирюхин Г.Н., Гохман Л.М. Особенности деформирования и разрушения битумоминеральных материалов в условиях ползучести при изгибе: Сб. тр. / Союздорнии. - М., 1979. - Вып. 113.

91. Стабников Н.В. Асфальтобетонные облицовки северных гидротехнических сооружений. - Л.: Стройиздат, 1980.

92. Кирюхин Г.Н. К вопросу о долговременной прочности асфальтобетона: Сб. тр./ Союздорнии. - М, 1977. - № 99.

93. Бартенев Г.М., Зуев Ю.С. Прочность и разрушение высокоэластичных материалов. - М.-Л.: Химия, 1964.

94. Испытания металлов: Сб. статей: Пер. с нем. - М: Металлургия, 1967.

95. Носков В.Н. О пределе текучести асфальтобетона: Сб. науч. тр. / СибАДИ. - Омск, 1975. - Вып. 46.

96. Ребиндер П.А. О реологии тиксотропно-структури-рованных дисперсных систем. ^В кн.: Физ.-хим. механика. Избр. тр.-М.: Наука, 1979.

97. Руденский А.В. Дорожные асфальтобетонные покрытия. -М,: Транспорт, 1992.

98. Журков С.II., Томашевский Э.Е. Временная зависимость прочности при различных режимах нагружения. - В кн.: Некоторые проблемы прочности твердого тела. - Л.: ЛГУ, 1959.

99. Розен О.Б. Погодоустойчивость нефтяных битумов и битумных кровельных материалов. - М.: Стройиздат Наркомстроя. 1941.

100. Гольфанд СИ. О составе и погодоустойчивости асфальтовых битумов.- В сб.: Новости дор. техники. - М.: Гушосдор, 1940.

101. О стабильности битумов и взаимодействии их с минеральными материалами/А.И. Лысихина, Н.М.Сникая. Н.М.Авласова, Л.Н.Ястребова. - М.: Дориздат. 1952.

102. Колбановская А.С, Михайлов В.В. Дорожные битумы. - М.: Транспорт, 1973.

103. Давыдова А.Р. Влияние температуры на необратимые изменения свойств битумов (старение) и методы их оценки: Сб. тр. / Союздорнии. - М., 1969. - Вып. 34.

104. Печеный Б.Г., Ахметова Л.А. Исследование механизма старения битумов в эксплуатационных условиях: Сб.тр. ВашНИИНП. - Уфа, 1976. - Вып. 15.

105. Project for developing performance related standards in Europe; evaluation of test methods to characterize bituminous binders. - В кн.: Ninth International Conference on Asphalt Pavements. - Denmark. 2002. Vol. 1.

106. Киркжип ПН, Обоснование нового метода ускоренной оценки склонности асфальтобетона к старению: Сб. гр.; Союздорнии. - М., 1994.

107. Гоглидзе В.М. Пути повышения устойчивости асфальтобетонных покрытий в южных климатических условиях. - В кн.: Сб. докл. на науч.-техн. совещании по стр-ву автомоб. дорог. М., 1963.

108. Баринов Е.Н. Основы теории и технологии применения асфальтобетонов на вспененных битумах. - Л.: Изд-во Ленинград, ун-та, 1990.

 
































































































































































































Дата: 2019-02-25, просмотров: 422.