Ядерные реакции распада некоторых тяжелых ядер могут происходить самопроизвольно (без внешнего воздействия), при этом кроме нейтронов могут испускаться и другие частицы. Такие ядра называют радиактивными, а явление самопроизвольного (спонтанного) распада ядер с испусканием одной или нескольких частиц называют радиоактивностью.Радиоактивное ядро называют материнским, а ядра, образующиеся в результате распада, называют дочерними. Дочерние ядра также могут оказаться радиоактивными. Вследствие распада число радиоактивных ядер с течением времени уменьшается.
Закон этого уменьшения можно получить теоретически на основе статистических представлений, если учесть, что все ядра идентичны по характеру процессов внутри их. Поэтому любое из ядер с одинаковой вероятностью может распасться в любой момент времени, и распад каждого ядра никаким образом не влияет на распады других ядер. Вероятность распада одного ядра за 1с называется постоянной распада и обозначается буквой λ. Как показали исследования, ядра различных элементов имеют разные постоянные распада и они не зависят ни от каких либо внешних воздействий. Если имеется Nрадиоактивных ядер с постоянной распада равной λ, то за малый промежуток времениdtиз них должны испытать распадdNядер в количестве пропорциональном λ,Nиdt:
-dN=λNdt, (3.6)
где знак – перед dNпоказывает уменьшение числа ядер. Интегрирование этого уравнения дает
N = Noe-λt , (3.7)
где Nо – число ядер в момент t=0, N – число оставшихся (не распавшихся) ядер к моменту t. Это соотношение называют основным законом радиоактивного распада.Как видно, число нераспавшихся ядер убывает со временем экспоненциально. Наряду с постоянной λ, процесс радиоактивного распада характеризуют еще периодом полураспада Т. Период полураспада Т – это время, за которое распадается половина первоначального количества ядер. Оно определяется условиемNo/2 =Noe-λТ, откуда следует, что
T = ln2/λ = 0,693/λ. (3.8)
Период полураспада для различных ядер может иметь величины от долей секунды (10-7с) до астрономических времен (1010 лет).
К основным видам радиоактивности относятся альфа, бета и гамма распады, они были открыты французским физиком Беккерелем в 1896г. Он обнаружил, что уран и его соединения испускают лучи или частицы, проникающие сквозь непрозрачные тела и способные засвечивать фотопластинку. Беккерель установил, что интенсивность излучения пропорциональна только концентрации урана и не зависит от внешних условий (температуры, давления) и от того, находится ли уран в каких-либо химических соединениях. Отклонение излучения в электрическом поле показало, что оно разделяется наa-частицы (ядра гелия),b- частцы (электроны) иg- лучи (электромагнитное излучение с очень малой длиной волны ). Атомное ядро, испускающееg-кванты,a-,b- или другие частицы, является нестабильным или радиоактивным ядром. В природе существует порядка трехсот стабильных атомных ядер, остальные ядра радиоактивны, обычно, это радиоактивные изотопы (радиоизотопы).
При альфа-распаде происходит самопроизвольное испускание ядром α –частицы (ядра ), и это происходит по схеме
, (3.9)
где X – символ материнского ядра, Y –дочернего.
Установлено, что α – частицы испускают только тяжелые ядра, где имеется избыток нейтронов. При распаде, α – частицы уносят почти всю энергию и только малая часть (несколько процентов) остается у дочернего ядра. Поэтому, кинетическая энергия α – частицы может быть очень большой (4-10 МэВ). В воздухе при нормальном давлении пробег α - частиц составляет несколько сантиметров (их энергия расходуется на образование ионов). Покидая ядро, частице приходится преодолевать потенциальный барьер, высота которого превосходит ее энергию, это происходит благодаря туннельному эффекту.
Бета-распад - это самопроизвольный процесс, в котором материнское ядро превращается в другое ядро с тем же массовым числом А, но с зарядовым числом Z, отличающимся от исходного на ±1.Это связано с тем, что β – распад сопровождается испусканием электрона или позитрона (позитрон - элементарная частица сходная во всем с электроном, но имеющая положительный заряд, она является античастицей электрона) или захватом электрона из оболочки атома
(3.7)
Число бета-активных ядер, известных в настоящее время, составляет около полутора тысяч, но только 20 из них являются естественными бета-радиоактивными изотопами. Все остальные получены искусственным путем.
Различают три типа b-распада - электронный, позитронный и К-захват: электронный β- – распад, это реакция, в которой ядро испускает электрон и его зарядовое число Z становится Z+1; позитронный β+ - распад, это реакция, в которой ядро испускает позитрон и его зарядовое число Z становится Z-1; К – захват, это процесс, в котором ядро захватывает один из электронов электронной оболочки атома (обычно из К – оболочки) и его зарядовое число Z становится равным Z – 1, на освободившееся место в К – оболочке переходит электрон с другой оболочки, и поэтому К – захват всегда сопровождается рентгеновским излучением.
Так как в ядрах отсутствуют электроны и позитроны, очевидно, что они возникают в результате процессов, происходящих внутри ядра с протонами и нейтронами. Такие реакции были экспериментально обнаружены при изучении излучений атомных реакторов, причем для их объяснения ученому Паули в 1931г. пришлось предположить о существовании новых частиц с малой массой и не имеющих заряда. Эти частицы должны очень слабо взаимодействовать с другими частицами и обладать большой проникающей способностью, поэтому они были обнаружены только в 1956г. и названы нейтрино (n) и антинейтрино (n~). С помощью этих частиц три разновидности β – распада могут быть обусловлены следующими превращениями нуклонов в ядре:
распад,
распад, (3.8)
распад.
Наличие этих частиц позволяет объяснить наблюдаемое непрерывное распределение электронов по кинетической энергии и их произвольный импульс. Если бы не было нейтрино, то электроны имели бы строго определенный импульс, равный импульсу дочернего ядра, в реальности же, энергия и импульс распределяется между электроном и нейтрино в самых разных пропорциях, поэтому в экспериментах испускаемые электроны имеют достаточно произвольные импульс и энергию.
Наблюдать нейтрино очень сложно, так как они почти не взаимодействуют с другими частицами и, согласно теоретическим оценкам, нейтрино с энергией 1 МэВ могут пробегать без столкновения в воде порядка 1000км. Такие нейтрино свободно пронизывают Солнце и, тем более, Землю. Чтобы зарегистрировать процесс захвата нейтрино другими частицами, необходимо иметь огромные плотности их потока. Это стало возможным только после создания ядерных реакторов, в которых при ядерных реакциях возникают мощные потоков нейтрино.
Гамма-распад заключается в испускании возбужденным ядром гамма – квантов, энергия которых варьируется в пределах от 10КэВ до 5МэВ. Гамма-излучение - это не самостоятельный тип радиоактивности, оно сопровождает процессы α и β – распада. Существенно, что спектр испускаемых гамма – квантов дискретный. Это объясняется тем, что согласно оболочной модели, ядро имеет дискретные энергетические уровни возможных состояний и переход ядра из возбужденного состояния в состояние с меньшей энергией должен по квантовой механике сопровождаться испусканием кванта электромагнитного излучения. Вследствие дискретности энергий состояний, спектр излучаемых частот тоже должен быть дискретен.
Альфа-распад атомных ядер.
Альфа-распад - распад атомных ядер, сопровождающийся испусканием альфа-частиц (ядер 4He).
Часть изотопов могут самопроизвольно испускать альфа-частицы (испытывать альфа-распад), т.е. являются альфа-радиоактивными. Альфа-радиоактивность за редким исключением (например 8Be) не встречается среди легких и средних ядер. Подавляющее большинство альфа-радиоактивных изотопов (более 200) расположены в периодической системе в в области тяжелых ядер (Z > 83). Известно также около 20 альфа-радиоактивных изотопов среди редкоземельных элементов, кроме того, альфа-радиоактивность характерна для ядер, находящихся вблизи границы протонной стабильности. Это обусловлено тем, что альфа-распад связан с кулоновским отталкиванием, которое возрастает по мере увеличения размеров ядер быстрее (как Z2 ), чем ядерные силы притяжения, которые растут линейно с ростом массового числа A.
Ядро альфа-радиоактивно, если выполнено условие, являющееся следствием закона сохранения энергии
M(A,Z) >M(A-4,Z-2) + Mα, | (1) |
где M(A,Z) и M(A-4,Z-2) - массы покоя исходного и конечного ядер соответственно, Mα - масса альфа-частицы. При этом в результате распада конечное ядро и альфа-частица приобретают суммарную кинетическую энергию
Qα = ( M(A,Z) - M(A-4,Z-2) - Mα ) с2, | (2) |
которая называется энергией альфа-распада. Ядра могут испытывать альфа-распад также на возбужденные состояния конечных ядер и из возбужденных состояний начальных ядер. Поэтому соотношение для энергии альфа-распада (2) можно обобщить следующим образом
Qα = ( M(A,Z) - M(A-4,Z-2) - Mα ) с2 + - , | (3) |
где и - энергии возбуждения начального и конечного ядер соответственно. Альфа-частицы, возникающие в результате распада возбужденных состояний, получили название длиннопробежных. Для большинства ядер с A > 190 и для многих ядер с 150 < A < 190 условие (12) выполняется, однако далеко не все они считаются альфа-радиоактивными. Дело в том, что современные экспериментальные возможности не позволяют обнаружить альфа-радиоактивность для нуклидов с периодом полураспада большим, чем 1016 лет. Кроме того, часть “потенциально” альфа-радиоактивных ядер испытывают также бета-распад, который сильно конкурирует с альфа-распадом.
Основную часть энергии альфа-распада (около 98%) уносят альфа-частицы. Используя законы сохранения энергии и импульса для кинетической энергии альфа-частицы Tα можно получить соотношение
(4) |
Периоды полураспада известных альфа-радиоактивных нуклидов варьируются от 0.298 мкс для 212Po до >1015 лет для 144Nd, 174Hf... Энергия альфа-частиц, испускаемых тяжелыми ядрами из основных состояний, составляет 4 - 9 МэВ, ядрами редкоземельных элементов 2 - 4.5 МэВ.
Важным свойством альфа-распада является то, что при небольшом изменении энергии альфа-частиц периоды полураспада меняются на многие порядки. Так у 232Th Qα = 4.08 МэВ, T1/2 = 1.41·1010 лет, а у 218Th Qα = 9.85 МэВ, T1/2 = 10 мкс. Изменению энергии в 2 раза соответствует изменение в периоде полураспада на 24 порядка.
Для четно-четных изотопов одного элемента зависимость периода полураспада от энергии альфа-распада хорошо описывается эмпирическим законом Гейгера - Неттола
lg T1/2 = A + B/(Qα)1/2, | (5) |
где A и B - константы слабо зависящие от Z. С учетом заряда дочернего ядра Z связь между периодом полураспада T1/2 и энергией альфа-распада Qα может быть представлено в виде (B.A. Brown, Phys. Rev. c46, 811 (1992))
lg T1/2 = 9.54Z0.6/(Qα)1/2 - 51.37, | (6) |
где T1/2 в сек, Qα в МэВ. На рис. 1 показаны экспериментальные значения периодов полураспада для 119 альфа-радиоактивных четно-четных ядер (Z от 74 до 106) и их описание с помощью соотношения (6).
Рис. 1. |
Для нечетно-четных, четно-нечетных и нечетно-нечетных ядер общая тенденция сохраняется, но их периоды полураспада в 2 - 1000 раз больше, чем для четно-четных ядер с данными Z и Qα.
Основные особенности альфа-распада, в частности сильную зависимость вероятности альфа-распада от энергии удалось в 1928 г. объяснить Г. Гамову и независимо от него Р. Герни и Э. Кондону. Ими было показано, что вероятность альфа-распада в основном определяется вероятностью прохождения альфа-частицы сквозь потенциальный барьер.
Рассмотрим простую модель альфа-распада. Предполагается, что альфа-частица движется в сферической области радиуса R, где R - радиус ядра. Т.е. в этой модели предполагается, что альфа-частица постоянно существует в ядре.
Вероятность альфа-распада равна произведению вероятности найти альфа-частицу на границе ядра f на вероятность ee прохождения через потенциальный барьер D (прозрачность барьера)
λ = fD = ln2/T1/2. | (7) |
Можно отожествить f с числом соударений в единицу времени, которые испытывает альфа-частица о внутренние границы барьера, тогда
(8) |
где v, Ta, a - скорость внутри ядра, кинетическая энергия и приведенная масса альфа-частицы, V0 - ядерный потенциал. Подставив в выражение (8) V0 = 35 МэВ, Ta = 5 МэВ, получим для ядер с A 200, f 1021 с-1.
Hа рис.2 показана зависимость потенциальной энергии между альфа-частицей и остаточным ядром от расстояния между их центрами. Кулоновский потенциал обрезается на расстоянии R, которое приблизительно равно радиусу остаточного ядра. Высота кулоновского барьера Bk определяется соотношением
МэВ | (9) |
Здесь Z и z - заряды (в единицах заряда электрона e) остаточного ядра и альфа-частицы соответственно. Например для 238U Bk 30 МэВ.
Можно выделить три области.
| Рис. 5 |
(Аналогично влияние кулоновского барьера и в случае ядерной реакции, когда альфа-частица подлетает к ядру. Если ее энергия меньше высоты кулоновского барьера, она скорее всего рассеется кулоновским полем ядра, не проникнув в него и не вызвав ядерной реакции. Вероятность таких подбарьерных реакций очень мала.)
Квантово-механическое решение задачи о прохождении частицы через потенциальный барьер дает для вероятности прохождения (коэффициента прозрачности барьера) D
(10) |
где μα- приведенная масса, Tα - энергия α-частицы. В приближении Tα << Bk, где Bk - высота кулоновского барьера (предполагается, что барьер чисто кулоновский) описывается соотношением
(11) |
Рассчитанные по формулам (7), (8) и (11) периоды полураспада правильно передают важнейшую закономерность альфа-распада - сильную зависимость периода полураспада T1/2 от энергии альфа-частиц Tα(энергии альфа-распада Qα Tα ). При изменении периодов полураспада более чем на 20 порядков отличия экспериментальных значений от расчетных всего 1-2 порядка. Конечно, такие расхождения все же довольно велики. Где их источник и как надо усовершенствовать теорию, чтобы эти расхождения с экспериментом уменьшить? Какие факторы должны быть дополнительно учтены?
V(r) = Vk (r) + Vц (r), | (12) |
(13) |
3. Хотя высота центробежного барьера для тяжелых ядер при l = 8 составляет всего около 10% от высоты кулоновского барьера и центробежный потенциал спадает быстрее, чем кулоновский, эффект вполне ощутим и для больших l может приводить к подавлению альфа-распада более, чем на 2 порядка.
Бета-распад атомных ядер.
Альфа-распад - распад атомных ядер, сопровождающийся испусканием альфа-частиц (ядер 4He).
Часть изотопов могут самопроизвольно испускать альфа-частицы (испытывать альфа-распад), т.е. являются альфа-радиоактивными. Альфа-радиоактивность за редким исключением (например 8Be) не встречается среди легких и средних ядер. Подавляющее большинство альфа-радиоактивных изотопов (более 200) расположены в периодической системе в в области тяжелых ядер (Z > 83). Известно также около 20 альфа-радиоактивных изотопов среди редкоземельных элементов, кроме того, альфа-радиоактивность характерна для ядер, находящихся вблизи границы протонной стабильности. Это обусловлено тем, что альфа-распад связан с кулоновским отталкиванием, которое возрастает по мере увеличения размеров ядер быстрее (как Z2 ), чем ядерные силы притяжения, которые растут линейно с ростом массового числа A.
Ядро альфа-радиоактивно, если выполнено условие, являющееся следствием закона сохранения энергии
M(A,Z) >M(A-4,Z-2) + Mα, | (1) |
где M(A,Z) и M(A-4,Z-2) - массы покоя исходного и конечного ядер соответственно, Mα - масса альфа-частицы. При этом в результате распада конечное ядро и альфа-частица приобретают суммарную кинетическую энергию
Qα = ( M(A,Z) - M(A-4,Z-2) - Mα ) с2, | (2) |
которая называется энергией альфа-распада. Ядра могут испытывать альфа-распад также на возбужденные состояния конечных ядер и из возбужденных состояний начальных ядер. Поэтому соотношение для энергии альфа-распада (2) можно обобщить следующим образом
Qα = ( M(A,Z) - M(A-4,Z-2) - Mα ) с2 + - , | (3) |
где и - энергии возбуждения начального и конечного ядер соответственно. Альфа-частицы, возникающие в результате распада возбужденных состояний, получили название длиннопробежных. Для большинства ядер с A > 190 и для многих ядер с 150 < A < 190 условие (12) выполняется, однако далеко не все они считаются альфа-радиоактивными. Дело в том, что современные экспериментальные возможности не позволяют обнаружить альфа-радиоактивность для нуклидов с периодом полураспада большим, чем 1016 лет. Кроме того, часть “потенциально” альфа-радиоактивных ядер испытывают также бета-распад, который сильно конкурирует с альфа-распадом.
Основную часть энергии альфа-распада (около 98%) уносят альфа-частицы. Используя законы сохранения энергии и импульса для кинетической энергии альфа-частицы Tα можно получить соотношение
(4) |
Периоды полураспада известных альфа-радиоактивных нуклидов варьируются от 0.298 мкс для 212Po до >1015 лет для 144Nd, 174Hf... Энергия альфа-частиц, испускаемых тяжелыми ядрами из основных состояний, составляет 4 - 9 МэВ, ядрами редкоземельных элементов 2 - 4.5 МэВ.
Важным свойством альфа-распада является то, что при небольшом изменении энергии альфа-частиц периоды полураспада меняются на многие порядки. Так у 232Th Qα = 4.08 МэВ, T1/2 = 1.41·1010 лет, а у 218Th Qα = 9.85 МэВ, T1/2 = 10 мкс. Изменению энергии в 2 раза соответствует изменение в периоде полураспада на 24 порядка.
Для четно-четных изотопов одного элемента зависимость периода полураспада от энергии альфа-распада хорошо описывается эмпирическим законом Гейгера - Неттола
lg T1/2 = A + B/(Qα)1/2, | (5) |
где A и B - константы слабо зависящие от Z. С учетом заряда дочернего ядра Z связь между периодом полураспада T1/2 и энергией альфа-распада Qα может быть представлено в виде (B.A. Brown, Phys. Rev. c46, 811 (1992))
lg T1/2 = 9.54Z0.6/(Qα)1/2 - 51.37, | (6) |
где T1/2 в сек, Qα в МэВ. На рис. 1 показаны экспериментальные значения периодов полураспада для 119 альфа-радиоактивных четно-четных ядер (Z от 74 до 106) и их описание с помощью соотношения (6).
Рис. 1. |
Для нечетно-четных, четно-нечетных и нечетно-нечетных ядер общая тенденция сохраняется, но их периоды полураспада в 2 - 1000 раз больше, чем для четно-четных ядер с данными Z и Qα.
Основные особенности альфа-распада, в частности сильную зависимость вероятности альфа-распада от энергии удалось в 1928 г. объяснить Г. Гамову и независимо от него Р. Герни и Э. Кондону. Ими было показано, что вероятность альфа-распада в основном определяется вероятностью прохождения альфа-частицы сквозь потенциальный барьер.
Рассмотрим простую модель альфа-распада. Предполагается, что альфа-частица движется в сферической области радиуса R, где R - радиус ядра. Т.е. в этой модели предполагается, что альфа-частица постоянно существует в ядре.
Вероятность альфа-распада равна произведению вероятности найти альфа-частицу на границе ядра f на вероятность ee прохождения через потенциальный барьер D (прозрачность барьера)
λ = fD = ln2/T1/2. | (7) |
Можно отожествить f с числом соударений в единицу времени, которые испытывает альфа-частица о внутренние границы барьера, тогда
(8) |
где v, Ta, a - скорость внутри ядра, кинетическая энергия и приведенная масса альфа-частицы, V0 - ядерный потенциал. Подставив в выражение (8) V0 = 35 МэВ, Ta = 5 МэВ, получим для ядер с A 200, f 1021 с-1.
Hа рис.2 показана зависимость потенциальной энергии между альфа-частицей и остаточным ядром от расстояния между их центрами. Кулоновский потенциал обрезается на расстоянии R, которое приблизительно равно радиусу остаточного ядра. Высота кулоновского барьера Bk определяется соотношением
МэВ | (9) |
Здесь Z и z - заряды (в единицах заряда электрона e) остаточного ядра и альфа-частицы соответственно. Например для 238U Bk 30 МэВ.
Можно выделить три области.
| Рис. 5 |
(Аналогично влияние кулоновского барьера и в случае ядерной реакции, когда альфа-частица подлетает к ядру. Если ее энергия меньше высоты кулоновского барьера, она скорее всего рассеется кулоновским полем ядра, не проникнув в него и не вызвав ядерной реакции. Вероятность таких подбарьерных реакций очень мала.)
Квантово-механическое решение задачи о прохождении частицы через потенциальный барьер дает для вероятности прохождения (коэффициента прозрачности барьера) D
(10) |
где μα- приведенная масса, Tα - энергия α-частицы. В приближении Tα << Bk, где Bk - высота кулоновского барьера (предполагается, что барьер чисто кулоновский) описывается соотношением
(11) |
Рассчитанные по формулам (7), (8) и (11) периоды полураспада правильно передают важнейшую закономерность альфа-распада - сильную зависимость периода полураспада T1/2 от энергии альфа-частиц Tα (энергии альфа-распада Qα Tα ). При изменении периодов полураспада более чем на 20 порядков отличия экспериментальных значений от расчетных всего 1-2 порядка. Конечно, такие расхождения все же довольно велики. Где их источник и как надо усовершенствовать теорию, чтобы эти расхождения с экспериментом уменьшить? Какие факторы должны быть дополнительно учтены?
V(r) = Vk (r) + Vц (r), | (12) |
(13) |
3. Хотя высота центробежного барьера для тяжелых ядер при l = 8 составляет всего около 10% от высоты кулоновского барьера и центробежный потенциал спадает быстрее, чем кулоновский, эффект вполне ощутим и для больших l может приводить к подавлению альфа-распада более, чем на 2 порядка.
Ядерные реакции.
Ядерная реакция – это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры ядра и выделением вторичных частиц или γ-квантов.
В результате ядерных реакций могут образовываться новые радиоактивные изотопы, которых нет на Земле в естественных условиях.
Первая ядерная реакция была осуществлена Э. Резерфордом в 1919 году в опытах по обнаружению протонов в продуктах распада ядер. Резерфорд бомбардировал атомы азота α-частицами. При соударении частиц происходила ядерная реакция, протекавшая по следующей схеме:
При ядерных реакциях выполняется несколько законов сохранения: импульса, энергии, момента импульса, заряда. В дополнение к этим классическим законам при ядерных реакциях выполняется закон сохранения так называемого барионного заряда (т. е. числа нуклонов – протонов и нейтронов). Выполняется также ряд других законов сохранения, специфических для ядерной физики и физики элементарных частиц.
Ядерные реакции могут протекать при бомбардировке атомов быстрыми заряженными частицами (протоны, нейтроны, α-частицы, ионы). Первая реакция такого рода была осуществлена с помощью протонов большой энергии, полученных на ускорителе, в 1932 году:
Однако наиболее интересными для практического использования являются реакции, протекающие при взаимодействии ядер с нейтронами. Так как нейтроны лишены заряда, они беспрепятственно могут проникать в атомные ядра и вызывать их превращения. Выдающийся итальянский физик Энрико Ферми первым начал изучать реакции, вызываемые нейтронами. Он обнаружил, что ядерные превращения вызываются не только быстрыми, но и медленными нейтронами, движущимися с тепловыми скоростями.
Ядерные реакции сопровождаются энергетическими превращениями. Энергетическим выходомядерной реакции называется величина
Q = (MA + MB – MC – MD)c2 = ΔMc2. |
где MA и MB – массы исходных продуктов, MC и MD – массы конечных продуктов реакции. Величина ΔM называется дефектом масс. Ядерные реакции могут протекать с выделением (Q > 0) или с поглощением энергии (Q < 0). Во втором случае первоначальная кинетическая энергия исходных продуктов должна превышать величину |Q|, которая называется порогом реакции.
Для того чтобы ядерная реакция имела положительный энергетический выход, удельная энергия связи нуклонов в ядрах исходных продуктов должна быть меньше удельной энергии связи нуклонов в ядрах конечных продуктов. Это означает, что величина ΔM должна быть положительной.
Возможны два принципиально различных способа освобождения ядерной энергии.
1. Деление тяжелых ядер. В отличие от радиоактивного распада ядер, сопровождающегося испусканием α- или β-частиц, реакции деления – это процесс, при котором нестабильное ядро делится на два крупных фрагмента сравнимых масс.
В 1939 году немецкими учеными Отто Ганом и Фрицем Штрассманом было открыто деление ядер урана. Продолжая исследования, начатые Ферми, они установили, что при бомбардировке урана нейтронами возникают элементы средней части периодической системы – радиоактивные изотопы бария (Z = 56), криптона (Z = 36) и др.
Уран встречается в природе в виде двух изотопов: (99,3 %) и (0,7 %). При бомбардировке нейтронами ядра обоих изотопов могут расщепляться на два осколка. При этом реакция деления наиболее интенсивно идет на медленных (тепловых) нейтронах, в то время как ядра вступают в реакцию деления только с быстрыми нейтронами с энергией порядка 1 МэВ.
Основной интерес для ядерной энергетики представляет реакция деления ядра В настоящее время известны около 100 различных изотопов с массовыми числами примерно от 90 до 145, возникающих при делении этого ядра. Две типичные реакции деления этого ядра имеют вид:
Обратите внимание, что в результате деления ядра, инициированного нейтроном, возникают новые нейтроны, способные вызвать реакции деления других ядер. Продуктами деления ядер урана-235 могут быть и другие изотопы бария, ксенона, стронция, рубидия и т. д.
Кинетическая энергия, выделяющаяся при делении одного ядра урана, огромна – порядка 200 МэВ. Оценку выделяющейся при делении ядра энергии можно сделать с помощью понятия удельной энергии связи нуклонов в ядре. Удельная энергия связи нуклонов в ядрах с массовым числом A ≈ 240 порядка 7,6 МэВ/нуклон, в то время как в ядрах с массовыми числами A = 90–145 удельная энергия примерно равна 8,5 МэВ/нуклон. Следовательно, при делении ядра урана освобождается энергия порядка 0,9 МэВ/нуклон или приблизительно 210 МэВ на один атом урана. При полном делении всех ядер, содержащихся в 1 г урана, выделяется такая же энергия, как и при сгорании 3 т угля или 2,5 т нефти.
Продукты деления ядра урана нестабильны, так как в них содержится значительное избыточное число нейтронов. Действительно, отношение N / Z для наиболее тяжелых ядер составляет примерно 1,6 (рис 6.6.2), для ядер с массовыми числами от 90 до 145 это отношение порядка 1,3–1,4. Поэтому ядра-осколки испытывают серию последовательных β–-распадов, в результате которых число протонов в ядре увеличивается, а число нейтронов уменьшается до тех пор, пока не образуется стабильное ядро.
При делении ядра урана-235, которое вызвано столкновением с нейтроном, освобождается 2 или 3 нейтрона. При благоприятных условиях эти нейтроны могут попасть в другие ядра урана и вызвать их деление. На этом этапе появятся уже от 4 до 9 нейтронов, способных вызвать новые распады ядер урана и т. д. Такой лавинообразный процесс называется цепной реакцией. Схема развития цепной реакции деления ядер урана представлена на рис. 6.8.1.
Рисунок 6.8.1. Схема развития цепной реакции |
Для осуществления цепной реакции необходимо, чтобы так называемый коэффициент размножения нейтронов был больше единицы. Другими словами, в каждом последующем поколении нейтронов должно быть больше, чем в предыдущем. Коэффициент размножения определяется не только числом нейтронов, образующихся в каждом элементарном акте, но и условиями, в которых протекает реакция – часть нейтронов может поглощаться другими ядрами или выходить из зоны реакции. Нейтроны, освободившиеся при делении ядер урана-235, способны вызвать деление лишь ядер этого же урана, на долю которого в природном уране приходится всего лишь 0,7 %. Такая концентрация оказывается недостаточной для начала цепной реакции. Изотоп также может поглощать нейтроны, но при этом не возникает цепной реакции.
Цепная реакция в уране с повышенным содержанием урана-235 может развиваться только тогда, когда масса урана превосходит так называемую критическую массу. В небольших кусках урана большинство нейтронов, не попав ни в одно ядро, вылетают наружу. Для чистого урана-235 критическая масса составляет около 50 кг.
Критическую массу урана можно во много раз уменьшить, если использовать так называемые замедлители нейтронов. Дело в том, что нейтроны, рождающиеся при распаде ядер урана, имеют слишком большие скорости, а вероятность захвата медленных нейтронов ядрами урана-235 в сотни раз больше, чем быстрых. Наилучшим замедлителем нейтронов является тяжелая водаD2O. Обычная вода при взаимодействии с нейтронами сама превращается в тяжелую воду.
Хорошим замедлителем является также графит, ядра которого не поглощают нейтронов. При упругом взаимодействии с ядрами дейтерия или углерода нейтроны замедляются до тепловых скоростей.
Применение замедлителей нейтронов и специальной оболочки из бериллия, которая отражает нейтроны, позволяет снизить критическую массу до 250 г.
В атомных бомбах цепная неуправляемая ядерная реакция возникает при быстром соединении двух кусков урана-235, каждый из которых имеет массу несколько ниже критической.
Устройство, в котором поддерживается управляемая реакция деления ядер, называется ядерным(или атомным) реактором. Схема ядерного реактора на медленных нейтронах приведена на рис. 6.8.2.
Рисунок 6.8.2. Схема устройства ядерного реактора на медленных нейтронах |
Ядерная реакция протекает в активной зоне реактора, которая заполнена замедлителем и пронизана стержнями, содержащими обогащенную смесь изотопов урана с повышенным содержанием урана-235 (до 3 %). В активную зону вводятся регулирующие стержни, содержащие кадмий или бор, которые интенсивно поглощают нейтроны. Введение стержней в активную зону позволяет управлять скоростью цепной реакции.
Активная зона охлаждается с помощью прокачиваемого теплоносителя, в качестве которого может применяться вода или металл с низкой температурой плавления (например, натрий, имеющий температуру плавления 98 °C). В парогенераторе теплоноситель передает тепловую энергию воде, превращая ее в пар высокого давления, который направляется в турбину, соединенную с электрогенератором, а из турбины поступает в конденсатор. Во избежание утечки радиации контуры теплоносителя I и парогенератора II работают по замкнутым циклам.
Турбина атомной электростанции является тепловой машиной, определяющей в соответствии со вторым законом термодинамики общую эффективность станции. У современных атомных электростанций коэффициент полезного действия приблизительно равен 1/3. Следовательно, для производства 1000 МВт электрической мощности тепловая мощность реактора должна достигать 3000 МВт. 2000 МВт должны уносится водой, охлаждающей конденсатор. Это приводит к локальному перегреву естественных водоемов и последующему возникновению экологических проблем.
Однако, главная проблема состоит в обеспечении полной радиационной безопасности людей, работающих на атомных электростанциях, и предотвращении случайных выбросов радиоактивных веществ, которые в большом количестве накапливаются в активной зоне реактора. При разработке ядерных реакторов этой проблеме уделяется большое внимание. Тем не менее, после аварий на некоторых АЭС, в частности на АЭС в Пенсильвании (США, 1979 г.) и на Чернобыльской АЭС (1986 г.), проблема безопасности ядерной энергетики встала с особенной остротой.
Наряду с ядерным реактором, работающим на медленных нейтронах, большой практический интерес представляют реакторы, работающие без замедлителя на быстрых нейтронах. В таких реакторах ядерным горючим является обогащенная смесь, содержащая не менее 15 % изотопа . Преимущество реакторов на быстрых нейтронах состоит в том, что при их работе ядра урана-238, поглощая нейтроны, посредством двух последовательных β–-распадов превращаются в ядра плутония, которые затем можно использовать в качестве ядерного топлива:
Коэффициент воспроизводства таких реакторов достигает 1,5, т. е. на 1 кг урана-235 получается до 1,5 кг плутония. В обычных реакторах также образуется плутоний, но в гораздо меньших количествах.
Первый ядерный реактор был построен в 1942 году в США под руководством Э. Ферми. В нашей стране первый реактор был построен в 1946 году под руководством И.В. Курчатова.
2. Термоядерные реакции. Второй путь освобождения ядерной энергии связан с реакциями синтеза. При слиянии легких ядер и образовании нового ядра должно выделяться большое количество энергии. Это видно из кривой зависимости удельной энергии связи от массового числа A (рис 6.6.1). Вплоть до ядер с массовым числом около 60 удельная энергия связи нуклонов растет с увеличением A. Поэтому синтез любого ядра с A < 60 из более легких ядер должен сопровождаться выделением энергии. Общая масса продуктов реакции синтеза будет в этом случае меньше массы первоначальных частиц.
Реакции слияния легких ядер носят название термоядерных реакций, так как они могут протекать только при очень высоких температурах. Чтобы два ядра вступили в реакцию синтеза, они должны сблизится на расстояние действия ядерных сил порядка 2·10–15 м, преодолев электрическое отталкивание их положительных зарядов. Для этого средняя кинетическая энергия теплового движения молекул должна превосходить потенциальную энергию кулоновского взаимодействия. Расчет необходимой для этого температуры T приводит к величине порядка 108–109 К. Это чрезвычайно высокая температура. При такой температуре вещество находится в полностью ионизированном состоянии, которое называется плазмой.
Энергия, которая выделяется при термоядерных реакциях, в расчете на один нуклон в несколько раз превышает удельную энергию, выделяющуюся в цепных реакциях деления ядер. Так, например, в реакции слияния ядер дейтерия и трития
выделяется 3,5 МэВ/нуклон. В целом в этой реакции выделяется 17,6 МэВ. Это одна из наиболее перспективных термоядерных реакций.
Осуществление управляемых термоядерных реакций даст человечеству новый экологически чистый и практически неисчерпаемый источник энергии. Однако получение сверхвысоких температур и удержание плазмы, нагретой до миллиарда градусов, представляет собой труднейшую научно-техническую задачу на пути осуществления управляемого термоядерного синтеза.
На данном этапе развития науки и техники удалось осуществить только неуправляемую реакцию синтеза в водородной бомбе. Высокая температура, необходимая для ядерного синтеза, достигается здесь с помощью взрыва обычной урановой или плутониевой бомбы.
Термоядерные реакции играют чрезвычайно важную роль в эволюции Вселенной. Энергия излучения Солнца и звезд имеет термоядерное происхождение.
Дата: 2019-02-19, просмотров: 277.