При этом Социометрическая процедура может проводиться в двух формах. Первый вариант – непараметрическая процедура. В данном случае испытуемому предлагается ответить на вопросы социометрической карточки без ограничения числа выборов испытуемого. Если в группе высчитывается, скажем, 12 человек, то в указанном случае каждый из опрашиваемых может выбрать 11 человек (кроме самого себя). Таким образом, теоретически возможное число сделанных каждым членом группы выборов по направлению к другим членам группы в указанном примере будет равно (N-1), где N – число членов группы. Точно так же и теоретически возможное число полученных субъектом выборов в группе будет равно (N-1). Сразу уясним себе, что указанная величина (N-1) полученных выборов является основной количественной константой социометрических измерений. При непараметрической процедуре эта теоретическая константа является одинаковой как для индивидуума, делающего выборы, так и для любого индивидуума, ставшего объектом выбора. Достоинством данного варианта процедуры является то, что она позволяет выявить так называемую эмоциональную экспансивность каждого члена группы, сделать срез многообразия межличностных связей в групповой структуре. Однако при увеличении размеров группы до 12-16 человек этих связей становится так много, что без применения вычислительной техники проанализировать их становится весьма трудно.
Другим недостатком непараметрической процедуры является большая вероятность получения случайного выбора. Некоторые испытуемые, руководствуясь личным мотивом, нередко пишут в опросниках: «выбираю всех». Ясно, что такой ответ может иметь только два объяснения: либо у испытуемого действительно сложилась такая обобщенная аморфная и недифференцированная система отношений с окружающими (что маловероятно), либо испытуемый заведомо дает ложный ответ, прикрываясь формальной лояльностью к окружающим и к экспериментатору (что наиболее вероятно).
Анализ подобных случаев заставил некоторых исследователей попытаться изменить саму процедуру применения Метода и таким образом снизить вероятность случайного выбора. Так родился второй вариант – параметрическая Процедура с ограничением числа выборов. Испытуемым предлагают выбирать строго фиксированное число из всех членов группы. Например, в группе из 25 человек каждому предлагают выбрать лишь 4 или 5 человек. Величина ограничения числа социометрических выборов получила название «социометрического ограничения» или «лимита выборов». Многие исследователи считают, что введение «социометрического ограничения» значительно превышает надежность социометрических данных и облегчает статистическую обработку материала. С психологической точки зрения социометрическое ограничение заставляет испытуемых более внимательно относиться к своим ответам, выбирать для ответа только тех членов группы, которые действительно соответствуют предлагаемым ролям партнера, лидера или товарища по совместной деятельности. Лимит выборов значительно снижает вероятность случайных ответов и позволяет стандартизировать условия выборов в группах различной численности в одной выборке, что и делает возможным сопоставление материала по различным группам.
В настоящее время принято считать, что для групп в 22-25 участников минимальная величина «социометрического ограничения» должна выбираться в пределах 4-5 выборов. Существенное отличие второго варианта социометрической процедуры состоит в том, что социометрическая константа (N-1) сохраняется только для системы получаемых выборов (т. е. из группы к участнику). Для системы отданных выборов (т. е. в группу от участника) она измеряется новой величиной d (социометрическим ограничением). Введением этой величины можно стандартизировать внешние условия выборов в группах разной численности. Для этого необходимо определять величину d по одинаковой для всех групп вероятности случайного выбора. Формулу определения такой вероятности предложили в свое время Дж. Морено и Е. Дженнингс: P(A)=d/(N-1), где Р – вероятность случайного события (А) социометрического выбора; N – число членов группы.
Обычно величина Р(А) выбирается в пределах 0,20-0,30. Подставляя эти значения в формулу для определения d с известной величиной N, получаем искомое число «социометрического ограничения» в выбранной для измерений группе.
Недостатком параметрической процедуры является невозможность раскрыть многообразие взаимоотношений в группе. Возможно выявить только наиболее субъективно значимые связи. Социометрическая структура группы в результате такого подхода будет отражать лишь наиболее типичные, «избранные» коммуникации. Введение «социометрического ограничения» не позволяет судить об эмоциональной экспансивности членов группы. Социометрическая карточка или Социометрическая анкета составляется на заключительном этапе разработки программы. В ней каждый член группы Должен указать свое отношение к другим членам группы по выделенным критериям (например, с точки зрения совместной работы, участия в решении деловой задачи, проведения досуга, в игре и т. д.) Критерии определяются в зависимости от программы данного исследования: изучаются ли отношения в производственной группе, группе досуга, во временной или стабильной группе.
Определение числа выборов для разных по численности групп, но с заранее заданной величиной Р(А) в пределах 0,14-0,25 можно произвести, пользуясь специальной таблицей (см. ниже).
Величины ограничения социометрических выборов
Число членов групп | Социометрическое ограничение d | Вероятность случайного выбора P(A) |
5-7 | 1 | 0,20-0,14 |
8-11 | 2 | 0,25-0,18 |
12-16 | 3 | 0,23-0,19 |
17-21 | 4 | 0,22-0,19 |
22-26 | 5 | 0,22-0,19 |
27-31 | 6 | 0,22-0,19 |
31-36 | 7 | 0,21-0,19 |
Дата: 2019-02-25, просмотров: 243.