Примеры комбинаторных задач. Перестановки. Размещения. Сочетания. Относительная частота случайного события. Вероятность равновозможных событий.
В результате изучения данной темы обучающийся должен знать/понимать:
комбинаторное правило умножения; определение перестановок,
размещений, сочетаний; понятия отношений частоты и вероятности случайного события; формулы для подсчета их числа; понятия «случайное событие», «относительная частота», «вероятность случайного события»;
уметь: различать понятия «размещение» и «сочетания»; определять о каком виде комбинаций идет речь в задачах; решать задачи, в которых требуется составлять те или иные комбинации элементов и подсчитать их число; вычислять вероятность случайного события при классическом подходе.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: решения комбинаторных задач.
Уровень обязательной подготовки выпускника
Уровень возможной подготовки выпускника
а) Сколько существует вариантов билетов?
б) Сколько из них тех, в которых Вова знает все вопросы?
в) Сколько из них тех, в которых есть вопросы всех трех типов?
г) Сколько из них тех, в которых Вова выучил большинство вопросов?
а) обе они гласные;
б) среди них есть буква «ь»;
в) среди них нет буквы «а»;
г) одна буква гласная, а другая согласная.
УУД
Коммуникативные:
Устанавливать рабочие отношения; эффективно сотрудничать и способствовать продуктивной кооперации.
Регулятивные:
Составлять план и последовательность действий; вносить коррективы и дополнения в составленные планы.
Познавательные:
Выбирать наиболее эффективные способы решения задачи в зависимости от конкретных условий; проводить анализ способов решения задач; восстанавливать предметную ситуацию, описанную в задаче, путём переформулирования, изображать на схеме только существенную информацию; анализировать объект, выделяя существенные и несущественные признаки.
Диагностическая работа №2
Вариант 1
1°. Сколькими способами могут разместиться 5 человек в салоне автобуса на 5 свободных местах?
2°. Сколько трехзначных чисел, в которых нет одинаковых цифр, можно составить из цифр 1, 2, 5, 7, 9?
3°. Победителю конкурса книголюбов разрешается выбрать две книги из 10 различных книг. Сколькими способами он может осуществить этот выбор?
4°. В доме 90 квартир, которые распределяются по жребию. Какова вероятность того, что жильцу не достанется квартира на первом этаже, если таких квартир 6?
5. Из 8 мальчиков и 5 девочек надо выделить для работы на пришкольном участке 3 мальчиков и 2 девочек. Сколькими способами это можно сделать?
6. На четырех карточках записаны цифры 1, 3, 5, 7. Карточки перевернули и перемешали. Затем наугад последовательно положили эти карточки в ряд одну за другой и открыли. Какова вероятность того, что в результате получится число 3157?
Вариант 2
1°. Сколько шестизначных чисел можно составить из цифр 1, 2, 3, 5, 7, 9 без повторений цифр?
2°. Из 8 учащихся класса, успешно выступивших на школьной олимпиаде, надо выбрать двух для участия в городской олимпиаде. Сколькими способами можно сделать этот выбор?
3°. Из 15 туристов надо выбрать дежурного и его помощника. Какими способами это можно сделать?
4°. Из 30 книг, стоящих на полке, 5 учебников, а остальные художественные произведения. Наугад берут с полки одну книгу. Какова вероятность того, что она не окажется учебником?
5. Из 9 книг и 6 журналов надо выбрать 2 книги и 3 журнала. Сколькими способами можно сделать этот выбор?
6. На пяти карточках написаны буквы а, в, и, л, с. Карточки перевернули и перемешали. Затем наугад последовательно положили эти карточки в ряд одну за другой и открыли. Какова вероятность того, что в результате получится слово «слива»?
Дата: 2019-02-24, просмотров: 305.