Элементы комбинаторики и теории вероятности
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Примеры комбинаторных задач. Перестановки. Размещения. Сочетания. Относительная частота случайного события. Вероятность равновозможных событий.

В результате изучения данной темы обучающийся должен знать/понимать:

 комбинаторное правило умножения; определение перестановок,

размещений, сочетаний; понятия отношений частоты и вероятности случайного события; формулы для подсчета их числа; понятия «случайное событие», «относительная частота», «вероятность случайного события»;

уметь: различать понятия «размещение» и «сочетания»; определять о каком виде комбинаций идет речь в задачах; решать задачи, в которых требуется составлять те или иные комбинации элементов и подсчитать их число; вычислять вероятность случайного события при классическом подходе.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: решения комбинаторных задач.

Уровень обязательной подготовки выпускника

  • Сколькими способами могут разместиться 6 человек в салоне автобуса на шести свободных местах?
  • Сколько трехзначных чисел, в которых нет одинаковых цифр, можно составить из цифр 1, 2, 3, 4, 5?
  • Из 12 членов туристической группы надо выбрать трех дежурных. Сколькими способами можно сделать такой выбор?
  • Какова вероятность того, что при бросании игрального кубика выпадет более 4 очков?

Уровень возможной подготовки выпускника

  • Из 20 вопросов к экзамену Вова 12 вопросов выучил, 5 совсем не смотрел, а в остальных что-то знает, а что-то нет. На экзамене в билете будет три вопроса.

   а) Сколько существует вариантов билетов?

   б) Сколько из них тех, в которых Вова знает все вопросы?

   в) Сколько из них тех, в которых есть вопросы всех трех типов?

   г) Сколько из них тех, в которых Вова выучил большинство вопросов?

  • Случайным образом одновременно выбирают две буквы из 33 букв русского алфавита. Найдите вероятность того, что:

   а) обе они гласные;

   б) среди них есть буква «ь»;

   в) среди них нет буквы «а»;

   г) одна буква гласная, а другая согласная.

 

УУД

Коммуникативные:

Устанавливать рабочие отношения; эффективно сотрудничать и способствовать продуктивной кооперации.

Регулятивные:

Составлять план и последовательность действий; вносить коррективы и дополнения в составленные планы.

Познавательные:

Выбирать наиболее эффективные способы решения задачи в зависимости от конкретных условий; проводить анализ способов решения задач; восстанавливать предметную ситуацию, описанную в задаче, путём переформулирования, изображать на схеме только существенную информацию; анализировать объект, выделяя существенные и несущественные признаки.

 

 

Диагностическая работа №2

 

Вариант 1

1°. Сколькими способами могут разместиться 5 человек в салоне автобуса на 5 свободных местах?

2°. Сколько трехзначных чисел, в которых нет одинаковых цифр, можно составить из цифр 1, 2, 5, 7, 9?

3°. Победителю конкурса книголюбов разрешается выбрать две книги из 10 различных книг. Сколькими способами он может осуществить этот выбор?

4°. В доме 90 квартир, которые распределяются по жребию. Какова вероятность того, что жильцу не достанется квартира на первом этаже, если таких квартир 6?

5. Из 8 мальчиков и 5 девочек надо выделить для работы на пришкольном участке 3 мальчиков и 2 девочек. Сколькими способами это можно сделать?

6. На четырех карточках записаны цифры 1, 3, 5, 7. Карточки перевернули и перемешали. Затем наугад последовательно положили эти карточки в ряд одну за другой и открыли. Какова вероятность того, что в результате получится число 3157?

 

Вариант 2

1°. Сколько шестизначных чисел можно составить из цифр 1, 2, 3, 5, 7, 9 без повторений цифр?

2°. Из 8 учащихся класса, успешно выступивших на школьной олимпиаде, надо выбрать двух для участия в городской олимпиаде. Сколькими способами можно сделать этот выбор?

3°. Из 15 туристов надо выбрать дежурного и его помощника. Какими способами это можно сделать?

4°. Из 30 книг, стоящих на полке, 5 учебников, а остальные художественные произведения. Наугад берут с полки одну книгу. Какова вероятность того, что она не окажется учебником?

5. Из 9 книг и 6 журналов надо выбрать 2 книги и 3 журнала. Сколькими способами можно сделать этот выбор?

6. На пяти карточках написаны буквы а, в, и, л, с. Карточки перевернули и перемешали. Затем наугад последовательно положили эти карточки в ряд одну за другой и открыли. Какова вероятность того, что в результате получится слово «слива»?

 

 

Дата: 2019-02-24, просмотров: 310.