1. Выбрать правильный ответ.
Дифференциальное уравнение ‒ это
а) уравнение, связывающее функцию, дифференциал функции и дифференциал независимой переменной;
б) уравнение, связывающее независимую переменную,функцию и производные этой функции;
в) уравнение, связывающее независимые переменные, их функцию и первообразные функции;
г) уравнение, связывающее независимые переменные, их функцию, производные и первообразные этой функции.
2. Выбрать правильный ответ.
Всякое решение , получившееся из общего решения, называется:
а) решением дифференциального уравнения;
б) частным решением дифференциального уравнения;
в) особым решением дифференциального уравнения.
3. Выбрать правильный ответ.
Дифференцируемая функция , которая при подстановке в уравнение вместо неизвестной функции обращает его в тождество
называется:
а) решением дифференциального уравнения;
б) общим решением дифференциального уравнения;
в) частным решением дифференциального уравнения;
г) особым решением дифференциального уравнения.
4. Установить правильное соответствие.
а) ; | 1) линейное относительно y и y' дифференциальное урав- нение; |
б) ; | 2) линейное однородное дифференциальное уравнение с постоянными коэффициен- тами; |
в) ; | 3) линейное однородное дифференциальное уравнение второго порядка; |
г) ; | 4) дифференциальное уравнение с разделяющимися переменными; |
д) ; | 5) дифференциальное уравнение третьего порядка; |
е) ; | 6) линейное относительно x и x' дифференциальное уравнение; |
ж) ; | 7) дифференциальное уравнение, приводящееся к однородному; |
з) ; | 8) уравнение Бернулли; |
и) ; | 9) однородное дифференциальное уравнение первого порядка; |
к) ; | 10) линейное неоднородное дифференциальное уравнение с постоянными коэффициентами; |
л) . | 11) Дифференциальное уравнение в полных дифференциалах. |
5. Решить уравнения:
а) ;
б) ;
в) ;
г) ;
д) ;
е) ;
ж) ;
з) ;
и) ;
к) .
6. Решить задачу Коши:
а) ; ;
б) ; ;
в) ; ;
г) ; ;
д) ; ;
е) ; ;
ж) ; ;
з) ; .
7. Решить уравнения
а) ;
б) ;
в) .
8. Найти общие решения уравнений
а) ;
б) ;
в) .
9. Решить уравнения
а) ;
б) ;
в) ;
г) .
10. Выбрать все правильные ответы.
Для решения линейных неоднородных уравнений n-го порядка со специальной правой частью применяется
а) метод Бернулли;
б) метод вариации произвольных постоянных;
в) метод Лагранжа;
11. Составить линейное однородное дифференциальное уравнение с постоянными коэффициентами, фундаментальная система решений которого имеет вид
а) 1, ex;
б) 1, ex, e3x.
12. Дано дифференциальное уравнение и его частные решения. Составляют ли они фундаментальную систему?
а) ;
б) .
13. Найти решение системы дифференциальных уравнений
а) ;
б) .
XII. Ряды
1. Найти общий член ряда
а) ; | |
б) . | |
2. Найти сумму ряда
а) ;
б) .
3. Установить правильное соответствие.
а) признак Даламбера; | 1) достаточный признак сходимости знакоположительного ряда; |
б) признак сравнения; | |
в) признак Вейерштрасса; | 2) необходимый признак сходимости знакочередующегося ряда; |
г) интегральный признак; | |
д) признак Коши; | 3) достаточный признак равномерной сходимости функционального ряда. |
е) признак Лейбница. |
4. Исследовать ряд на сходимость. Указать общий член ряда, с которым сравнивается данный ряд
а) ;
б) .
5. Исследовать ряд на сходимость, применяя предельный признак сравнения. Указать общий член ряда, с которым сравнивается данный ряд
а) ;
б) ;
в) .
6. Исследовать сходимость рядов
а) ;
б) ;
в) ;
г) ;
д) .
7. Исследовать ряды на сходимость
а) ;
б) ;
в) .
8. Установить правильное соответствие.
а) | 1) | Знакоположительный ряд; | |
б) | 2) | Знакочередующийся ряд; | |
в) | 3) | Степенной ряд; | |
г) | 4) | Ряд Фурье; | |
д) | 5) | Функциональный ряд. | |
9. Выбрать правильный ответ.
Ряд сходится в точке x0,
а) x0 ;
б) x0 ;
в) x0 .
10. Найти область сходимости ряда
а) ;
б) ;
в) .
11. Может ли интервал сходимости ряда быть таким
а) (−2;0);
б) (0;2);
в) (−3;1);
г) (− );
д)(−3;3).
12. Разложить в ряд Фурье функцию f(x)=x2, заданную на интервале
[− ].
13. Разложить в ряд Фурье функцию f(x)=x, заданную на интервале (−3;3).
Ответы
Дата: 2019-02-02, просмотров: 238.