Состав волокон мышцы частично определяет ее окислительную способность. Как уже отмечалось в главе 3, МС-волокна более предрасположены к выполнению аэробной деятельности, чем БС, поскольку содержат больше митохондрий и
93
окислительных ферментов. БС-волокна более пригодны для гликолитического производства энергии. Следовательно, чем больше в мышцах МС-волокон, тем выше их окислительная способность. Например, у сильнейших бегунов на длинные дистанции значительно больше МС-волокон, митохондрий и выше активность окислительных ферментов, чем у нетренированных людей [5, б].
Тренировочные нагрузки, направленные на развитие выносливости, увеличивают окислительные способности всех волокон и особенно БС;
предъявляя высокие требования к окислительному фосфорилированию, они стимулируют мышечные волокна к образованию большего количества митохондрий, содержащих большее число окислительных ферментов. Увеличивая количество ферментов в волокнах для (3-окисления, такие нагрузки также помогают мышцам в большей мере рассчитывать на жиры как на источник производства АТФ.
Таким образом, тренировочные нагрузки на развитие выносливости позволяют повысить аэробные способности мышц даже у людей с высоким содержанием БС-волокон. Вместе с тем известно, что БС-волокно в результате тренировки на развитие выносливости не сможет в такой же мере увеличить выносливость, как МС-волокно.
Потребность в кислороде
Хотя окислительная способность мышц определяется количеством митохондрий и окислительных ферментов в них, окислительный метаболизм в конечном счете зависит от их адекватного снабжения кислородом. В состоянии покоя потребности организма в АТФ относительно невелики, поэтому потребность в кислороде также минимальна. Однако с увеличением интенсивности нагрузки возрастает и потребность в энергии. Для ее удовлетворения необходимо увеличить окис
лительное образование АТФ. Удовлетворение потребностей мышц в кислороде осуществляется за счет увеличения частоты и глубины дыхания, улучшения процесса газообмена в легких. Сердце начинает сокращаться чаще, доставляя в мышцы большее количество оксигенированной крови.
В организме человека кислорода немного. Поэтому количество кислорода, попадающего в кровь, которая проходит через легкие, прямо пропорционально количеству, используемому тканями для окислительного фосфорилирования. Следовательно, можно достаточно точно определить величину аэробного производства энергии, измерив количество кислорода, потребляемого в легких.
В ОБЗОРЕ...
1. Окислительная система включает расщепление источников энергии с участием кислорода. Она обеспечивает образование большего количества энергии, чем гликолитическая и система АТФ - КФ.
2. Окисление углеводов включает гликолиз, цикл Кребса и цепочку переноса электронов. Конечным результатом являются Н^О, СО, и 38 или 39 молекул АТФ из одной молекулы углеводов.
3. Окисление жиров начинается с р-окисления свободных жирных кислот и затем осуществляется так же, как и окисление углеводов: цикл Кребса и цепочка переноса электронов. Количество энергии, образуемой вследствие окисления жиров, значительно превышает таковое, образуемое при окислении углеводов, и зависит от количества окисленных свободных жирных кислот.
4. Процесс окисления белков более сложный, поскольку белки (аминокислоты) содержат азот, который не окисляется. Вклад белков в образование энергии относительно незначителен, поэтому обмен белков часто не принимают во внимание.
5. Окислительные способности мышц зависят от уровней содержания в них окислительных ферментов, состава волокон и наличия кислорода.
Дата: 2018-12-28, просмотров: 199.