С этого момента обмен жиров осуществляется по тому же принципу, что и метаболизм углеводов. Ацетил-КоА, образовавшийся вследствие р-окис-ления, вступает в цикл Кребса. В этом цикле образуется водород, который транспортируется в цепочку переноса электронов вместе с водородом, образованным во время р-окисления, где подвергается окислительному фосфорилированию. Как и при обмене глюкозы, промежуточными продуктами окисления свободных жирных кислот являются АТФ, Н,0 и СО,. Однако для полного сжигания молекулы свободных жирных кислот требуется больше кислорода.
Хотя жиры обеспечивают больше килокалорий энергии на грамм, чем углеводы, для их окисления требуется больше кислорода, чем для окисления углеводов. Жиры образуют 5,6 молекул АТФ относительно молекулы 02, углеводы —6,3 молекул АТФ относительно молекулы О-. Доставка кислорода ограничена кислород-транспортной системой, поэтому предпочтительным источником энергии во время выполнения физического упражнения высокой интенсивности являются углеводы
Преимущество содержания в свободных жирных кислотах большего количества углерода, чем в глюкозе, заключается в образовании большего количества ацетил-КоА при метаболизме данного количества жира, следовательно, в цикл Кребса поступает больше ацетил-КоА, а в цепочку переноса электронов —больше электронов. Именно поэтому при метаболизме жиров образуется намного больше энергии, чем при метаболизме углеводов.
92
Возьмем, например, пальмитиновую кислоту — довольно распространенную 16-углеродную свободную жирную кислоту. В результате реакций окисления, цикла Кребса и цепочки переноса электронов из одной молекулы пальмитиновой кислоты образуется 129 молекул АТФ (табл. 5.3), в то время как из молекулы глюкозы и гликогена соответственно 38 и 39 молекул. Несмотря на такой высокий показатель, только около 40 % энергии, высвобождающейся вследствие метаболизма молекул либо глюкозы, либо свободных жирных кислот, идет на образование АТФ. Остальные 60 % выделяются в виде тепла.
Таблица 5.3. Образование энергии вследствие окисления пальмитиновой кислоты (С,дЦцО;)
АТФ, образуемый из 1 молекулы пальмитиновой кислоты
Этап процесса
окислительным фосфорилированием
непосредственно |
Активация жирной
-2 |
35
88 121
кислоты
B-Окисление
Цикл Кребса 8 / 8
Итого
129
МЕТАБОЛИЗМ БЕЛКОВ
Как уже отмечалось, углеводы и жиры — предпочтительные источники энергии нашего организма. Однако используются и белки или, скорее, аминокислоты, из которых они состоят. Некоторые аминокислоты могут превращаться в глюкозу (посредством глюконеогенеза). Другие могут превращаться в различные промежуточные продукты окислительного метаболизма (такие, как пируват или ацетил-КоА), чтобы принять участие в окислительном процессе.
Количество энергии, образуемой белками, довольно трудно определить в отличие от энергии, образуемой углеводами или жирами, поскольку белки также содержат азот. При катаболизме аминокислот некоторое количество азота используется для образования новых аминокислот, остальное количество азота превращается в мочевину и выделяется главным образом с мочой. Этот процесс требует использования АТФ и, следовательно, приводит к затратам некоторого количества энергии.
При расщеплении белков посредством сжигания в лабораторных условиях образуется 5,65 ккалт"' энергии. При метаболизме белка в организме вследствие затрат энергии на процесс превращения азота в мочевину высвобождается всего 5,20 ккалт"' энергии, т.е. на 8 % меньше.
Чтобы точно определить интенсивность обмена белков, необходимо установить, какое коли
чество азота выводится из организма. Для этого необходимо собирать мочу в течение 12— 24 ч. Поскольку здоровый организм использует небольшое количество белков в состоянии покоя и при выполнении физической нагрузки (как правило, намного меньше 5 — 10 % всех затрат энергии), при оценке затрат энергии метаболизм белков просто не принимают во внимание.
ОКИСЛИТЕЛЬНЫЕ СПОСОБНОСТИ
МЫШЦ
Мы выяснили, что процессы окислительного метаболизма обеспечивают максимальное образование энергии. Было бы идеальным, если бы эти процессы всегда осуществлялись с максимальной эффективностью. Однако, как и все физиологические системы, они имеют свои ограничения. Окислительная способность (?о мышцы — показатель ее максимальной способности использовать кислород. В следующем параграфе мы рассмотрим факторы, ограничивающие эту способность мышц.
Активность ферментов
Способность мышечных волокон окислять углеводы и жиры довольно трудно определить. Во многих исследованиях наблюдали тесную взаимосвязь между способностью мышцы выполнять аэробное упражнение в течение длительного времени и активностью ее окислительных ферментов. Поскольку для окисления требуется много ферментов, их активность в мышечных волокнах — достаточно надежный показатель окислительного потенциала.
Нет смысла измерять все ферменты, поэтому для иллюстрации аэробной способности волокон выбирают некоторые из них. Чаше всего используют такие ферменты, как сукцинатдегидрогена-за и цитратсинтаза, ферменты митохондрий, участвующие в цикле Кребса. На рис. 5.9 проиллюстрирована взаимосвязь между активностью сукцинатдегидрогеназы в латеральной широкой мышце и ее окислительной способностью. Окислительная активность ферментов в мышцах спортсменов, занимающихся видами спорта, требующими проявления выносливости, в два — четыре раза выше, чем в мышцах нетренированных мужчин и женщин [2, 3, 5].
Дата: 2018-12-28, просмотров: 217.