Строение и биологическая роль ДНК. Нуклеотидный состав ДНК и правила Чаргаффа
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Молекулы нуклеиновых кислот представляют собой длинные цепочки, состоящие из остатков нуклеотидов, которые соединены через остатки ортофосфорной кислоты фосфодиэфирными связями. В образовании фосфодиэфирных связей участвуют гидроксильные группы рибозы или 2-дезоксирибозы, связанные с третьим и пятым углеродными атомами. Однако на концах образуемой полинуклеотидной цепи остаются свободные гидроксильные группы у третьего и пятого углеродных атомов рибозы или дезоксирибозы, которые обозначают 3'-ОН и 5'-ОН. Соответствующие концы полинуклеотидной цепи, содержащие 3'-ОН и 5'-ОН, называют 3'- и 5'- концами. На прочность фосфоэфирных связей в составе полинуклеотидных цепей оказывают влияние углеводные компоненты образующих эти цепи нуклеотидов – рибоза или дезоксирибоза. Межнуклеотидные связи в молекулах РНК значительно лабильней по сравнению с ДНК, в связи с чем они легче подвергаются гидролизу. Последовательность соединения нуклеотидных остатков в молекулах нуклеиновых кислот фосфодиэфирными связями.

Число нуклеотидных остатков в молекулах нуклеиновых киcлот очень велико и оно варьирует в зависимости от вида организмов. Молекулы РНК могут включать от 100 до 100 тыс. нуклеотидных остатков (н.о). Ещё длиннее полинуклеотидные цепи ДНК: у вирусов – до 8-10 тыс. н.о., бактерий и других микроорганизмов – 106-107 н.о., у высших организмов – 108-1010 н.о. Чередование нуклеотидных остатков в полинуклеотидной цепи зависит от вида организмов. Учитывая, что она строится из четырёх типов нуклеотидов, может возникнуть огромное разнообразие макромолекул, общее число которых определяется по формуле N=4n, где n – общее количество нуклеотидных остатков в полинуклеотидной цепи. Например, если молекула нуклеиновой кислоты построена из 1000 нуклеотидов, то исходя из выше указанных условий может образоваться 41000 нуклеотидных последовательностей, каждая из которых представляет собой молекулу определённого генотипа.

Впервые генетическая роль ДНК была установлена в опытах по изучению трансформации у бактерий. В 1928 г. Ф. Гриффит показал, что при введении в организм животных совместно с непатогенными штаммами пневмококков убитых нагреванием клеток патогенного штамма животные погибали от пневмонии. Однако если животным вводили отдельно непатогенный штамм или клетки убитого патогенного штамма, то заболевания пневмонией не наблюдалось. В связи с этим возникло предположение, что какое-то вещество, содержащееся в убитых клетках патогенного штамма, передаёт клеткам непатогенного штамма способность противостоять иммунной системе животных и поражать их пневмонией. Наблюдаемое явление назвали трансформацией бактерий.

Для выявления трансформирующего фактора из убитых клеток были выделены в очищенном состоянии ДНК, белки и некоторые другие химические компоненты, которые стали вводить в организм животных совместно с клетками непатогенного штамма. Проводя такие опыты, О. Эйвери, К. Мак-Леод и М. Мак-Карти в 1944 г. установили, что трансформирующим фактором у пневмококков является ДНК. Таким образом, они впервые показали, что наследственная способность одной клетки осуществлять определённую биохимическую функцию может передаваться другой клетке путём введения в неё ДНК, выделенной из первой клетки. После этого в ряде других опытов с вирусами, бактериями и высшими организмами было подтверждено, что именно молекулы ДНК являются носителями генетической информации, определяющей наследственные свойства организмов.

Открытие генетической роли ДНК послужило активным импульсом для дальнейшего изучения состава, строения и свойств нуклеиновых кислот. При изучении химического состава ДНК Э. Чаргаффом были выяснены закономерности нуклеотидного состава ДНК, которые получили название правила Чарграффа. Молекулы ДНК подвергали гидролизу, в ходе которого расщеплялись не только фосфодиэфирные связи, соединяющие остатки нуклеотидов, но и внутринуклеотидные связи между азотистым основанием и дезоксирибозой, а также между дезоксирибозой и остатком фосфорной кислоты.

После гидролиза определяли содержание азотистых оснований. При этом было отмечено, что в составе ДНК любых организмов мольные соотношения пар оснований аденина и тимина, а также гуанина и цитозина всегда равны. Наблюдалось также равенство между суммой пуриновых и суммой пиримидиновых оснований, тогда как суммарное количество аденина и тимина заметно отличалось от суммарного содержания гуанина и цитозина. Используя сокращенные обозначения, отмеченные закономерности в содержании азотистых оснований в составе ДНК можно записать в виде следующих соотношений: А = Т; Г= Ц; А+Г = Т+Ц; А+Т≠ Г+Ц

Изучение нуклеотидного состава ДНК различных организмов показало, что соотношение пар азотистых оснований А+Т/Г+Ц является важным показателем специфичности ДНК у разных организмов. Каждый вид организмов имеет свойственный ему нуклеотидный состав ДНК. В таблице 13 показано содержание азотистых оснований в ДНК животных, растений и микроорганизмов.

Нуклеотидный состав ДНК у одного и того же генотипа остаётся постоянным в изменяющихся условиях окружающей среды, что является важнейшим фактором сохранения наследственных свойств организма.

Кроме особенностей нуклеотидного состава, специфичность ДНК, свойственная конкретному генотипу, определяется также последовательностью соединения остатков нуклеотидов в полинуклеотидной цепи, которую называют первичной структурой ДНК. Каждый вид ДНК характеризуется совершенно определённой первичной структурой.

Последовательность нуклеотидных остатков в полинуклеотидной цепи записывают в виде сокращённых обозначений нуклеотидов слева направо, начиная от 5'-конца. Буквенные обозначения нуклеотидов могут быть соединены чёрточками. Например, в нуклеотидной последовательности Т-Ц-Г-А-Ц-А слева направо последовательно соединены фосфодиэфирными связями остатки дТМФ, дЦМФ, дГМФ, дАМФ, дЦМФ и дАМФ, причём на 5'-конце данного олигонуклеотида находится остаток дТМФ, на 3'-конце – остаток дАМФ.

Содержание и соотношение азотистых оснований в ДНК различных

организмов

Организмы Содержание оснований (моль % ) Отношение А+Т/Г+Ц
А Т Г Ц
Человек 30,9 29,4 19,9 19,8 1,52
Овца 29,3 28,3 21,4 21,0 1,36
Черепаха 29,7 27,9 22,0 21,3 1,31
Зародыши пшеницы 27,3 27,1 22,7 22,8 1,19
Листья моркови 26,7 26,8 23,2 23,3 1,15
Дрожжи 31,3 32,9 18,7 17,1 1,79
Бактерии: Е.coli 24,7 23,6 26,0 25,7 0,93
C. perfringens 36,9 36,3 14,0 12,8 2,70
Бактериофаг Т 7 26,0 26,0 24,0 24,0 1,08

 

Изучение вытянутых нитей ДНК методом рентгеноструктурного анализа выявило, что молекулы ДНК имеют пространственную структуру в виде спирали, включающей более одной полинуклеотидной цепи. А методом кислотно-щелочного титрования было показано, что нативная структура ДНК стабилизируется водородными связями. Учитывая эти данные, а также основываясь на правилах Чаргаффа, Д. Уотсон и Ф. Крик в 1953 г. разработали модель строения ДНК.

Согласно модели Д. Уотсона и Ф. Крика молекула ДНК представляет собой двойную правозакрученную спираль, состоящую из двух полинуклеотидных цепей, которые закручены между собой и вокруг общей оси. Эти цепи антипараллельны и поэтому на каждом из концов двойной спирали находится 5'-конец одной и 3'-конец другой цепи. Сахарофосфатные группировки, входящие в состав нуклеотидов ДНК, выходят на поверхность спиралевидной структуры, тогда как азотистые основания находятся внутри и они соединяются водородными связями. При этом водородные связи возникают между парами оснований, которые структурно совместимы в пространстве. Такой принцип построения молекулы ДНК получил название комплементарного строения.

В соответствии с принципом комплементарности одна полинуклеотидная цепь двойной спирали ДНК имеет последовательность соединения нуклеотидных остатков, которая закономерно отражает другую, антипараллельную полинуклеотидную цепь (рис. 41). Методом построения молекулярных моделей было выяснено, что пространственно совместимыми (комплементарными) являются пары азотистых оснований аденин – тимин и гуанин – цитозин, между которыми и возникают водородные связи, удерживающие вместе в двойной спирали две полинуклеотидные цепи. При этом между аденином и тимином возникают две водородные связи, а между гуанином и цитозином – три.

Один виток спирали включает по 10 нуклеотидов в каждой из двух цепей и имеет длину по оси спирали 3,4 нм, а межнуклеотидные расстояния составляют 0,34 нм. Диаметр двойной спирали ДНК – 1,8 нм. Плоскости оснований в двойной спирали ДНК перпендикулярны оси спирали, а соседние по направлению цепей пары оснований находятся под углом 36°. Как позднее было установлено, модель структуры ДНК Д. Уотсона и Ф. Крика отображает пространственное строение основной формы ДНК, в виде которой она существует в клетках живых организмов. Её назвали В-формой. В В-форме остаток дезоксирибозы имеет S-конформацию, а азотистые основания – анти-конформацию.

Однако в дальнейшем было выяснено, что молекула ДНК может принимать и другую конформацию. Методом рентгеноструктурного анализа показано, что при понижении концентрации воды или добавлении спирта в ДНК изменяется пространственная структура дезоксирибозы, которая принимает N-конформацию. В результате перестройки структуры остатка дезоксирибозы уменьшаются расстояния между нуклеотидными остатками (до 0,25 нм), вследствие чего увеличивается диаметр двойной спирали, а число нуклеотидных пар в одном витке спирали возрастает до 11. Однако спираль остаётся правозакрученной и конформация азотистых оснований не изменяется. Двойную спираль, имеющую указанные параметры, называют А-формой ДНК. Между А-формой и В-формой ДНК существуют ещё и переходные варианты пространственной структуры двойной спирали.

При рассмотрении строения ДНК следует отметить, что под влиянием внешней среды молекула ДНК может переходить из одной конформации в другую, но её нуклеотидный состав и последовательность соединения нуклеотидов остаются неизменными, что является важным условием для сохранения генетической информации, которая заложена, как мы увидим далее, именно в виде последовательности нуклеотидов.

Для сохранения стабильности молекул ДНК важное значение имеет также принцип комплементарного связывания оснований в двойной спирали ДНК, в результате чего, зная последовательность соединения нуклеотидов в одной цепи, можно определить первичную структуру другой цепи, образующей с первой двойную спираль. Так, например, если в одной из цепей двойной спирали ДНК имеется последовательность нуклеотидных остатков -А-Г-Ц-Т-Ц-Г-, то совершенно очевидно, что в другой цепи согласно принципу комплементарности оснований образуется последовательность -Т-Ц-Г-А-Г-Ц-. Указанная закономерность в построении молекул ДНК предопределяет возможность синтеза новых молекул ДНК с сохранением заданной последовательности нуклеотидов, что осуществляется при размножении клеток организмов.

У высших организмов молекулы ДНК локализованы главным образом в хромосомах клеточного ядра, по одной молекуле в каждой хромосоме. В связи с тем, что длина полинуклеотидной цепи ДНК во много раз (» 10 тыс. раз) превышает линейные размеры хромосом, она образует строго упорядоченные компактные структуры, которые принимают наименьшие линейные размеры в метафазных хромосомах. Основные структурные единицы при упаковке ДНК в хромосомах – нуклеосомы, которые формируются с участием гистоновых белков.

Нуклеосома представляет собой октамер, содержащий по 2 молекулы каждого из четырёх гистонов – Н2А, Н2В, Н3 и Н4, на который закручена двойная спираль ДНК длиной 150-200 пар нуклеотидов. Диаметр нуклеосомы – 10 нм, толщина 5,7 нм. Образование нуклеосомы происходит в результате взаимодействия положительно заряженных аминокислотных остатков гистонов с отрицательно заряженными фосфатными группировками нуклеотидов ДНК, а также взаимодействия между гидрофобными группировками молекул гистонов, образующих гидрофобные глобулы.

Между нуклеосомами находятся участки ДНК длиной 20-90 пар нуклеотидов в виде двойной спирали. Под воздействием физиологической среды нуклеосомы, соединённые свободными участками двойной спирали ДНК, формируют микрофибриллы диаметром 10 нм. Далее с участием гистонов Н1 и в присутствии катионов Са2+ микрофибриллы диаметром 10 нм закручиваются в левую суперспираль с диаметром 30 нм и превращаются в крупные хроматиновые фибриллы, которые, взаимодействуя со структурными белками хромосомы, образуют суперспирализованные петли, называемые доменами, закреплённые в структуре хромосомы в строго определённом месте. В среднем в составе одного домена обычно насчитывается 40-50 тыс. нуклеотидных пар, включающих группу функционально связанных генов. В опытах показано, что в упаковке хроматиновых фибрилл в составе метафазных хромосом принимают также участие гистоны Н1.

В клетках прокариот (низших организмов) двойные спирали молекул ДНК образуют замкнутую кольцевую структуру, основой формирования которой служат белки негистоновой природы. Эта структура получила название нуклеоида. В составе нуклеоида белки негистоновой природы образуют комплексы с молекулой ДНК, переводя её в высокоупорядоченное состояние.

У растений и других высших организмов не вся ДНК содержится в хромосомах ядра, часть её находится в виде кольцевых структур в составе митохондрий и пластид. Митохондриальная и пластидная ДНК содержит генетическую информацию, необходимую для осуществления этими органеллами клетки их биологических функций. Как и ДНК прокариот, кольцевые молекулы митохондриальной и пластидной ДНК при взаимодействии со специфическими белками образуют нуклеоиды.

Подобно белкам, нуклеиновые кислоты являются гетерополимерами. Их мономеры нуклеотиды, из которых слагаются молекулы нуклеиновых кислот, резко отличны от аминокислот. Существует 2 типа нуклеиновых кислот: ДНК (дезоксирибонуклеиновая) и РНК (рибонуклеиновая кислота).

Остановимся более подробно на значении нуклеиновых кислот, которые в клетке выполняют очень важные функции. Особенности химического строения нуклеиновых кислот обеспечивают возможность хранения, переноса и передачи по наследству дочерним клеткам информации о структуре белковых молекул, которые синтезируются в каждой ткани на определенном этане индивидуального развития.

Поскольку большинство свойств в организме обусловлено белками, то понятно, что стабильность нуклеиновых кислот - важнейшее условие жизнедеятельности клеток и целых организмов. Любые изменения строения нуклеиновых кислот влекут за собой изменения структуры клеток или активности физиологических процессов в них, влияя, таким образом, на жизнеспособность. Изучение структуры нуклеиновых кислот, которую впервые установили американский биолог Уотсон и английский физик Крик, имеет исключительно важное значение для понимания наследования признаков у организмов и закономерностей функционирования, как отдельных клеток, так и клеточных систем – тканей и органов.

Исследованиями биохимиков установлено, что и биосинтез белков в живых организмах осуществляется под контролем нуклеиновых кислот.

Таким образом, нуклеиновые кислоты обеспечивают устойчивое сохранение наследственной информации и контролируют образование соответствующих им белков-ферментов, а белки-ферменты определяют основные особенности обмена веществ клетки. Все это очень важно для поддержания химической стабильности организмов, имеет решающее значение для существования жизни на Земле.

Характеристика обмена веществ и энергии

Обмен веществ и энергии – это основная функция организма. Под обменом веществ и энергии понимают совокупность процессов поступления питательных и биологически активных веществ в пищеварительный аппарат, превращения или освобождения их и всасывание продуктов превращения и освобождения веществ в кровь и лимфу, распределение, превращение и использование всосавшихся веществ в тканях органов, выделение конечных продуктов превращения и использования, вредных для организма. Выполнение любой другой функции организма связано с осуществлением обмена веществ и энергии.

Обмен веществ и энергии в организме осуществляется в три фазы: 1) поступление в организм нужных веществ, превращение и всасывание их в пищеварительном аппарате; 2) распределение, превращение и использование всосавшихся веществ; 3) выделение конечных продуктов превращения и использования веществ.

В процессе обмена веществ происходит превращение энергии. Потенциальная энергия сложных органических соединений при их расщеплении освобождается, превращаясь в механическую, электрическую и тепловую. Она используется на поддержание температуры тела, на совершение внешней работы, на процессы, связанные с ростом, развитием и жизнедеятельностью организма.

Обмен веществ представляет собой единство двух процессов: ассимиляции и диссимиляции.

Ассимиляция – совокупность процессов, обеспечивающих образование в организме свойственных ему веществ из веществ, поступивших в организм из внешней среды. Диссимиляция – совокупность процессов ферментативного расщепления сложных веществ. Оба процесса взаимосвязаны и возможны только при наличии другого. Интенсивность одного процесса зависит от интенсивности другого.

Обмены различных веществ в организме тесно взаимосвязаны, но для облегчения понимания целесообразно рассмотреть отдельно обмен белков, жиров, углеводов, водно-солевой обмен, обмен витаминов. Каждый из них имеет свои особенности.

Обмен белков

Белки имеют особое биологическое значение, так как являются носителями жизни. Они представляют собой материал, из которого строятся все клетки, ткани и органы организма; входят в состав ферментов, гормонов и др. Белковый оптимум составляет 1 г белка на 1 кг массы тела.

Все процессы в организме связаны с синтезом белка. Главную роль в синтезе белка играют нуклеиновые кислоты ДНК и РНК. ДНК находится в ядрах клеток, а РНК – в протоплазме клеток и ее структурах. ДНК являются носителями информации о структуре белка, т.е. являются образцом, с которого снимается копия. РНК передают информацию с ДНК на рибосомы, где и происходит образование новых белковых молекул.

Белки и нуклеиновые кислоты имеют ведущее значение в обмене веществ в организме. Обмен белков, как и всякий обмен, протекает в 3 фазы:

1) расщепление белков в желудочно-кишечном тракте и всасывание продуктов расщепления;

2) всосавшихся продуктов в организме и образование специфических для данного организма структур, белков, гормонов, ферментов и др.;

3) выделение из организма конечных продуктов обмена белков. Нуклеиновые кислоты входят в состав нуклеопротеидов, которые начинают превращаться в желудке под действием пепсинов с освобождением нуклеиновых кислот. Они в кишечнике под влиянием нуклеаз поджелудочного сока и фосфоэстераз кишечника гидролизуются с образованием в конечном счете мононуклеотидов, нуклеозидов, фосфорной кислоты, которые всасываются в кровь.

Мононуклеотиды в организме используются для синтеза нуклеиновых кислот; выполняют роль источников энергии, регуляторов активности химических реакций, входят в состав коферментов и др. В зависимости от типа клеток концентрация в них мононуклеотидов различна. Синтез их осуществляется наиболее активно в тканях эмбриона.

Превращение белков начинается в желудке под действием ферментов. Они расщепляются до полипептидов, пептидов и частично аминокислот. Дальнейшее расщепление белка, полипептидов и пептидов происходит в кишечнике под действием ферментов до аминокислот, которые затем всасываются в кровь.

Аминокислоты с кровью доставляются в клетки тканей и органов, и прежде всего в печень. Аминокислоты используются для синтеза белка, свойственного данному организму, его органу, ткани, белка, связанного с ростом, функцией, с самообновлением, регенерацией.

В печени синтезируются белки плазмы крови, белки печеночной ткани, которые используются на восстановление белков ткани печени, белок креатин, используемый мышцами, где он фосфорилируется до креатинфосфата, окисляющегося с образованием креатинина.

В тканях и органах организма синтезируется белок тканей, используемый на восстановление собственных белков. В печени и тканях наряду с синтезом происходит и обновление имеющегося в них белка. Считают, что половина всего азота организма обменивается на новый в течение 5…7 сут.

Одновременно в организме происходит распад белка. При этом образуются аминокислоты, которые поступают в кровь. Образовавшиеся аминокислоты, наряду с аминокислотами, поступающими из пищеварительного тракта, включаются в новые обменные реакции и используются для синтеза белка тканей.

Аминокислоты в организме не откладываются. Поэтому нормальное протекание белкового обмена характеризуется азотистым равновесием, т.е. количество азота, поступившего в организм, соответствует количеству азота, выделяемому из организма. Излишки аминокислот, поступающие с кормом, в печени могут превращаться в углеводы и жиры.

Все аминокислоты подразделяют на заменимые и незаменимые. Незаменимые аминокислоты не могут быть синтезированы в организме, а заменимые могут. Для синтеза белка необходим определенный набор заменимых и незаменимых аминокислот. В зависимости от содержания аминокислот в белках последние делят на полноценные и неполноценные.

Незаменимых аминокислот для свиньи, курицы и человека 10: дизин, триптофан, гистидин, фенилаланин, лейцин, изолейцин, метионин, валин, треонин, аргинин.

У жвачных и некоторых других видов животных есть свои особенности в обмене белка. Так, у жвачных микрофлора преджелудков способна синтезировать все незаменимые аминокислоты и, следовательно, могут обходиться кормом без незаменимых аминокислот.

Избыток аминокислот может использоваться и как источник энергии: аминокислоты дезаминируются, а затем окисляются с освобождением энергии и образованием воды и диоксида углерода.

При дезаминировании в тканях образуется аммиак, который связывается с глутаминовой кислотой, образуя глутамин. Глутамин является основной формой транспорта аммиака в печень, где он распадается на глутаминовую кислоту и аммиак.

Конечными продуктами превращения белков в организме являются аммиак, который в печени превращается в мочевину, креатинин, мочевая кислота, алантоин, диоксид углерода и вода. У птиц мочевая кислота является основным продуктом белкового обмена, соответствуя мочевине у млекопитающих. Азотистые соединения выводятся через почки с мочой, через кожу с потом; диоксид углерода – через легкие и кожу; вода – через почки, кожу и легкие.

В крови животных поддерживается концентрация белка на уровне 60…90 г/л, мочевины – 3,33…8,32 ммоль/л.

Обмен жиров

Жиры играют в организме роль запасного энергетического материала, а также являются пластическим материалом. Обмен жиров протекает в три фазы:

1) расщепление и всасывание жиров в желудочно-кишечном тракте;

2) превращение всосавшихся продуктов расщепления жиров в тканях и образование специфических для данного организма жиров, использование всосавшихся продуктов как пластического материала и источника энергии;

3) выделение продуктов обмена жиров из организма.

В пищеварительном аппарате под действием ферментов жир подвергается гидролизу до жирных кислот и глицерина, моноглицеридов. Продукты расщепления всасываются в энтероциты, где происходит обратный синтез триглицеридов. Затем здесь из триглицеридов и белка образуются хиломикроны – триглицериды, заключенные в оболочку из белка, фосфолипидов и эфиров Холестерина, которые поступают в лимфу. Часть свободных жирных кислот и глицерин, растворимые в воде, всасываются и в кровь. С лимфой хиломикроны, поступают в венозную кровь и транспортируются к тканям и органам. Первые органы, через которые проходят хиломикроны, – сердце, легкие, а затем уже они поступают в общий кровоток.

В легких происходят задержка части хиломикронов специальными клетками – гистиоцитами и временное депонирование. При этом жир окисляется с освобождением энергии, которая используется для процессов поддержания структурной организации легких и согревания поступающего в легкие воздуха.

Наиболее важную роль в превращении жиров крови играют печень, жировая ткань, молочные железы и желудочно-кишечный тракт.

В печени хиломикроны подвергаются гидролизу с образованием жирных кислот. Они окисляются или используются для синтеза новых триглицеридов и фосфолипидов, липопротеидов, а также частично депонируются. В таком виде жир поступает из печени в кровь и далее в жировые депо.

В жировой ткани происходит синтез и депонирование триглицеридов и жирных кислот. Перед использованием тканями и органами организма жир обязательно проходит стадию депонирования в жировых депо.

Жиры входят в состав мембраны клеток, в нервную ткань, наружные покровные ткани, витамины, ферменты, биологически активные вещества. #

Из жировых депо жир используется по мере необходимости; расщепляется до глицерина и жирных кислот, которые поступают в кровь и используются органами как энергетический и пластический материал.

Жиры – это основной источник энергии в организме. С жирами в организм поступают и так называемые незаменимые жирные кислоты: линолевая, линоленовая, арахидоновая. Примерно 20 различных жирных кислот участвуют в образовании триглицеридов животного организма. Состав их в молекулах триглицеридов меняется в зависимости от вида корма.

Глицерин окисляется до диоксида углерода и воды с образованием АТФ. Окисление жирных кислот путем бета-окисления сопровождается освобождением энергии и образованием АТФ. Промежуточными продуктами окисления являются кетоновые тела: бета-оксимасляная кислота, ацетон и ацетоуксусная кислота. Конечные продукты окисления жирных кислот – диоксид углерода и вода. Основное место окисления жирных кислот – печень.

В организме осуществляется и синтез жира, жирных кислот, глицерина из белков и углеводов при избыточном их поступлении. Синтезируется глицерин из глюкозы, жирные кислоты – из ацетоуксусной кислоты.

В крови животных поддерживается концентрация общих липидов на уровне 3,0…4,0 г/л, общих фосфолипидов – 1,53…3,63 г./л, холестерина – 140 мг %.

Конечные продукты превращения жиров выводятся из организма через почки с мочой, через кожу с потом, через легкие с выдыхаемым воздухом.

Обмен углеводов

Углеводы в организме используются в основном как источник энергии. Обмен углеводов – это совокупность процессов их превращения в организме. Он осуществляется в три фазы: гидролитическое расщепление углеводов в пищеварительном аппарате и всасывание продуктов гидролиза в кровь; превращение и использование всосавшихся из пищеварительного аппарата продуктов гидролиза углеводов в организме, сопровождающееся включением углеводов в структуры организма и освобождением энергии; выделение конечных продуктов обмена углеводов из организма.

Превращение углеводов под действием ферментов начинается в ротовой полости, продолжается в желудке и происходит в основном в кишечнике. Углеводы всасываются главным образом в виде глюкозы в тонком кишечнике и поступают в кровь.

С кровью глюкоза поступает в печень, где частично задерживается, частично проходит с кровью дальше и достигает тканей всех органов.

Всосавшаяся глюкоза в основном используется как энергетический материал, так как возможности отложения ее в организме ограничены. В печени, в мышцах и других органах глюкоза депонируется в виде гликогена. Часть глюкозы в печени превращается в жир и откладывается в жировых депо.

Во всех тканях, пройдя стадию депонирования, глюкоза используется как источник энергии, т.е. окисляется. Окисление глюкозы происходит как в аэробных, так и анаэробных условиях.

Вначале глюкоза активируется, превращается в пировиноградную кислоту. В аэробных условиях пировиноградная кислота окисляется в цикле Кребса до диоксида углерода и воды с образованием АТФ. При полном окислении молекулы глюкозы образуется 38 молекул АТФ. В анаэробных условиях пировиноградная кислота превращается в молочную кислоту с образованием энергии. Таким образом из молекулы глюкозы при отсутствии кислорода образуется 2 молекулы АТФ. Затем в печени из молочной кислоты синтезируются глюкоза и гликоген. Если же на этапе молочной кислоты возникают аэробные условия, то она превращается в пировиноградную кислоту, которая уже окисляется в цикле Кребса.

Глюкоза используется для синтеза лактозы, липидов, глицерина, аминокислот, жирных кислот.

У жвачных животных углеводы кормов в большей части превращаются, сбраживаются в преджелудках до образования летучих жирных кислот: уксусной, пропионовой и масляной, которые всасываются в кровь. Затем в организме уксусная, пропионовая и масляная кислоты используются для образования липидов и кетоновых тел; пропионовая кислота – для синтеза глюкозы; уксусная, масляная и пропионовая кислоты окисляются в тканях органов с образованием АТФ, диоксида углерода и воды.

В крови человека и моногастричных животных обеспечивается концентрация глюкозы на уровне 1,0… 1,2 г/л, у полигастричных – 0,42…0,6 г/л.

Обмен минеральных веществ

Минеральные вещества в целом связывают воедино превращение и использование питательных веществ в организме, так как они необходимы для построения клеток, белков, ферментов, гормонов, участвуют физиологических процессах – нервном возбуждении, мышечном сокращении, свертывании крови и др.

В организме более 80 элементов, из них 15 жизненно необходимых. Их подразделяют на макро- и микроэлементы. К макроэлементам относят кальций, фосфор, калий, натрий, хлор, серу и магний, к микроэлементам – железо, медь, цинк, йод, марганец, кобальт, молибден, селен и др.

Обмен их осуществляется в три фазы: поступление с кормом и водой; освобождение и всасывание в кровь с использованием во всех процессах; выведение отдельно в основном с мочой и калом при поступлении в избытке и в составе различных соединений.

Роль макроэлементов.

Кальций. Входит в состав опорных тканей организма – костную и мышечную, содержится постоянно в крови. Он способствует сокращению мышц, принимает участие в свертывании крови, стимулирует рождение импульсов в сердечной и гладких мышцах, участвует в определении проницаемости клеточных мембран. Кальций входит в состав молока.

Фосфор. В больших количествах включается в костную ткань в виде солей с кальцием, постоянно содержится в крови. Он входит в состав АТФ, поэтому принимает участие во всех процессах в организме.

Магний. Преимущественно входит в состав костной ткани, мышц, где включается в комплекс миозина и АТФ. Способствует взаимодействию его с актином, постоянно содержится в крови. Он является одним из основных элементов клетки и образует в ней комплексы с белками, стимулирует процессы окислительного фосфорилирования в митохондриях. Магний необходим для жизнедеятельности микроорганизмов в пищеварительном тракте.

Калий. Внутриклеточный элемент, принимает участие в возникновении и распространении возбуждения по мембране клетки, в транспорте веществ через мембрану клетки.

Натрий. Внеклеточный элемент, вместе с калием участвует в возникновении и распространении возбуждения по мембране клетки, повышает возбудимость нервной и мышечной ткани. Он обеспечивает осмотическое давление крови, служит щелочным резервом.

Хлор. Совместно с натрием обеспечивает осмотическое давление крови. Необходим для поддержания возбудимости возбудимых тканей. Он используется для образования соляной кислоты желудочными железами.

Сера. Входит в состав незаменимых аминокислот, гормонов, витаминов, поэтому ее физиологическая роль определяется их ролью.

Роль микроэлементов.

Железо. Образует стабильные комплексы с белками и углеводами и участвует в процессах организма: в эритроцитах – транспорта кислорода и диоксида углерода, в мышцах – тканевого дыхания.

Медь. Находится во всех тканях организма в составе белка церулоплазмина. Она обладает большой биологической активностью. Участвует в процессах кроветворения, ускоряет включение железа в гемоглобин в эритроците; оказывает стимулирующее влияние на защитные механизмы организма, повышает воспроизводительную функцию организма. Она необходима для роста шерсти, пера.

Кобальт. Распределяется во всех тканях организма; много в эритроцитах. Он включается в состав витамина цианкобаламина, который необходим для кроветворения. Кобальт стимулирует рост организма.

Цинк. В больших количествах содержится в крови, распределяется в тканях организма. Он образует непрочное соединение с гормоном инсулином и другими гормонами, осуществляя через них стимулирование роста, воспроизводительной функции организма. Цинк необходим для процесса кроветворения и образования костей скелета.

Марганец. Содержится в значительных количествах в костях скелета, в печени и других органах и тканях, крови. Он стимулирует через фермент щелочную фосфатазу отложение жира, образование белка, кроветворение и повышает защитные силы организма.

Молибден. Участвует в обмене пуринов, оказывая этим выраженное влияние на него организма.

Йод. Задерживается в организме в больших количествах щитовидной железой. Она использует йод для синтеза своих гормонов: трийодтиронина и тироксина. Свое влияние на организм йод оказывает через эти гормоны. Он стимулирует обмен белков, жиров и углеводов, повышает сопротивляемость к вредным воздействиям окружающей среды, ускоряет синтез ферментов.

Селен. Обладает большой биологической активностью, включается в обменные процессы и обеспечивает нормальное функционирование кожи, мышц. Он стимулирует рост и развитие организма, повышает его реактивность и резистентность.

Фтор. Участвует в минерализации костей и зубов, стимулирует рост, репаративные процессы, образование антител. Усиливает действие кальциферола.

Хром. Включается в фермент трипсин.

Бром. Усиливает процесс торможения в центральной нервной системе.

В крови животных поддерживается оптимальное для обмена веществ количество минеральных веществ – 9,0 г/л. При недостатке внутренних резервов минеральных веществ животные осуществляют поиск их источников. При повышении концентрации веществ в крови они откладываются в депо, увеличивается выделение их с мочой, уменьшается их всасывание из желудочно-кишечного тракта. В том и другом случаях включаются мехнизмы нервно-гормональной регуляции обмена минеральных веществ.

Обмен воды

Большую роль в обмене веществ играет вода, которая не является ни питательным веществом, ни источником энергии.

Организм животных содержит воды 60…70% от массы тела. Она входит в состав всех клеток тела, пищеварительных соков, плазмы крови, лимфы, тканевой жидкости и др. Наибольшее количество воды сосредоточено внутри клеток. Внеклеточная вода включает плазму крови, межклеточную жидкость и лимфу. Трансцеллюлярная вода – спинномозговая, внутриглазная, брюшной полости, плевры, перикарда, суставных сумок, желудочно-кишечного тракта. Между внеклеточной и внутриклеточной водой осуществляется постоянный обмен. Структура воды в клетках соответствует таковой в льдоподобном состоянии.

Вода благодаря действию ферментов включается в многочисленные биохимические реакции, а также является средой, в которой осуществляются реакции организма.

Вода крови пополняется за счет питьевой воды, поступающей в организм с пищей. Некоторое количество воды образуется в процессе окисления веществ – белка, жира, углеводов; из 100 г. соответственно образуется 41; 107 и 55 мл.

Общее количество воды в организме поддерживается на относительно постоянном уровне благодаря нервно-гормональной регуляции. В сутки человеку требуется до 2…3 л воды, корове 56…90 л, включая воду, поступающую с пищей.

Вода выводится с потом, калом, парами выдыхаемого воздуха, мочой, молоком.

Об обмене воды судят по ее балансу: у взрослых животных – водное равновесие, у растущих – положительный, при недостаточном поступлении воды – отрицательный баланс. При потере 15…20% наступает смерть. Такое количество воды теряется у лошадей за 17…18 с., крупного рогатого скота –20…25, собак – 8…10, у кур – за 7…8 с.

Регуляция обмена воды осуществляется рефлекторно с осморецепторов через нервный центр обмена воды, расположенный в гипоталамусе, с участием гормонов – антидиуретического и альдостерона.

Регуляция обмена белков, жиров, углеводов, минеральных веществ,

витаминов и воды

Регуляция обмена белков, жиров и углеводов имеет свои особенности, заключающиеся в том, что превращение и использование этих веществ в организме характеризуется генетически обусловленной высокой устойчивостью. Любое изменение концентрации этих веществ в крови воспринимается рецепторами сосудов и тканей, информация с них поступает в нервный центр обмена веществ. В нервном центре формируется программа действия, которая поступает ко всем тканям и органам по нервным волокнам и с помощью гормонов. Через симпатические нервы и гормоны тироксин, кортизол, кортикостерон, адреналин, норадреналин, глюкагон обеспечиваются процессы катаболизма. Через парасимпатические нервы – анаболитические процессы; подобное действие оказывают гормоны соматотропный, эстрогены, инсулин, пролактин и др.

Оптимальные для метаболизма концентрации минеральных веществ, воды и витаминов в крови и тканях поддерживают специальные механизмы регуляции, подобно таковым белков, жиров и углеводов.

Терморегуляция

Температура тела. Один из важнейших факторов, необходимых для обмена веществ, и ведущий фактор, обеспечивающий нормальный уровень тканевых процессов, – это температура тела. Она является фактором, определяющим скорость химических реакций и активность ферментов. Температура тела человека и животных поддерживается на постоянном уровне независимо от температуры окружающей среды: у человека около 36,5°С, у разных видов млекопитающих в пределах 37,5…40,0°С, а у птиц – 40,5…43,0°С. Такая температура оптимальна для ферментативных процессов в тканях.

Температура тела на постоянном уровне поддерживается за счет определенных для различных условий соотношений двух процессов: теплопродукции и теплоотдачи.

Теплопродукция. Это образование теплоты в организме, происходящее непрерывно в процессе обмена веществ и энергии. В организме три источника теплоты. Это теплота, образующаяся: 1) при постоянных затратах энергии; 2) при переменных затратах энергии и 3) при затратах на синтез продукции. Наибольшее количество теплоты образуется в органах с интенсивным обменом веществ и большой массой – печени и мышцах. При мышечной работе химическая энергия только на треть переходит в механическую работу, остальные две трети переходят в теплоту.

Теплопродукция может увеличиваться в 3…5 раз за счет активации ферментных окислительных реакций и терморегуляционной активности мышц. За счет повышения тонуса мышц при необходимости значительно увеличивается образование теплоты.

Теплоотдача. Это отдача теплоты в окружающую среду. Она происходит в основном четырьмя путями: теплоизлучением, конвекцией, теплопроведением и испарением жидкости с поверхности кожи, слизистой оболочки дыхательных путей, языка. Небольшое количество теплоты теряется с мочой и калом.

Теплоизлучение сводится к отдаче теплоты путем инфракрасного излучения. Конвекция – это переход теплоты с поверхности кожи в поток воздуха. Теплопроведение – это отдача теплоты предметам, соприкасающимся с телом. Факторы, определяющие размеры отдачи теплоты, следующие: величина разницы температур кожи и окружающей среды, теплопроводность, движение воздуха, размеры поверхности тела. Теплопроведение и теплоизлучение тем выше, чем больше разность между величинами температуры кожи и температуры окружающей среды. Если разность температур равна 0°С, то отдача теплоты путем теплопроведения и теплоизлучения прекращается.

Испарение – это отдача теплоты с потом и выдыхаемым воздухом. На испарение 1 мл пота затрачивается 0,58 ккал. Испарение является единственным путем отдачи теплоты при температуре окружающей среды, равной или незначительно меньшей температуры тела. Степень испарения зависит от температуры окружающей среды и влажности воздуха. Чем выше температура окружающей среды и меньше влажность воздуха, тем больше испарение, и наоборот. Потоотделение происходит и в связи с физическим напряжением. Отдача теплоты при потоотделении у разных видов животных зависит от степени развития и количества потовых желез; хорошо развиты они у лошади.

У животных имеются и механизмы, препятствующие чрезмерному рассеиванию теплоты с кожи, – волосяной покров, перья, подкожный жировой слой и регуляторные механизмы, обеспечивающие приспособительные изменения их состояния. Температура окружающей среды, при которой животное не испытывает ни тепла, ни холода, называется комфортной. Для разных животных она различна и в среднем находится в пределах от 14 до 25°С. Однако для молодняка, особенно поросят и цыплят, она выше – 30…35°С, а для телят ниже – 5…16 С.

Регуляция теплообразования и теплоотдачи. В комфортных условиях тепловой баланс не нуждается в коррекции. Деятельность механизмов поддержания оптимальной температуры тела проявляется при появлении тенденции к снижению или повышению температуры тела в связи с понижением или повышением температуры окружающей среды и недостаточностью или избытком теплопродукции и теплоотдачи. При этом возбуждаются терморецепторы гипоталамуса, сосудов и тканей, терморецепторы кожи. Информация с них поступает в нервный центр, где формируется программа действий, которая поступает к органам теплообразования или теплоотдачи. Они осуществляют свою деятельность, обеспечивая постоянство температуры тела.

При понижении температуры окружающей среды через симпатическую иннервацию и увеличение выработки тироксина, адреналина, кортикостероидов, обеспечивается сначала повышение окисления углеводов, жиров и белков, возрастание теплопродукции в печени, повышение тонуса скелетных мышц; при значительной холодовой нагрузке могут появиться непроизвольные сокращения скелетных мышц – дрожание, что ведет к повышению теплообразования. Одновременно происходит сужение кровеносных сосудов кожи, а значит, и понижение ее температуры, уменьшение величины разницы температур кожи и воздуха и соответственно снижение потери теплоты теплопроведением и теплоизлучением. Включаются дополнительные механизмы теплорегуляции – уменьшения поверхности тела, поднятия волос.

При повышении температуры окружающей среды и при повышенном образовании теплоты из-за температурной рецепции в нервном центре формируется программа, которая обеспечивает противоположные приспособительные реакции, изменения деятельности органов, а также усиление функции потовых желез, учащение дыхания.

Дата: 2018-12-21, просмотров: 599.