Адаптивность как свойство реальных сложных систем
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Под адаптивностью понимается закономерность, связанная с приспособлением системы к изменяющимся внешним и внутренним параметрам ее существования. Адаптивность тесно связана с понятием «саморегулирование» и «самоорганизация».

Саморегулирование систем

Живые организмы, в том числе и человек, технические устройства, социально-экономические процессы отличаются способностью к саморегулированию. Например, птицы и млекопитающие автоматически, независимо от температуры окружающей среды, регулируют внутреннюю температуру своего тела, поддерживая ее на определенном уровне.

Также её сущность можно проиллюстрировать на примере подготовки космонавтов для полета в космос. Перед полетом в космос космонавты в течение длительного времени проходят подготовку в условиях, близких к условиям работы в космосе. Для этого они тренируются в условиях невесомости, перегрузок организма, соответствующих будущим условиям. То есть космонавт как биологическая система должен пройти процесс адаптации в земных условиях для того, чтобы сохранить свою работоспособность с прежней эффективностью в околоземном пространстве.

Знание закономерностей, которыми обладают системы, позволяет исследователям заранее предсказать форму их поведения при каких-либо изменениях в окружающей среде. Это в свою очередь позволяет принимать более эффективные решения для процесса регулирования будущих событий.

Самоорганизующиеся системы.

Класс самоорганизующихся, или развивающихся, систем характеризуется рядом признаков, особенностей, которые, как правило, обусловлены наличием в системе активных элементов, делающих систему целенаправленной. Отсюда вытекают особенности экономических систем, как самоорганизующихся систем, по сравнению с функционирование технических систем:

· нестационарность (изменчивость) отдельных параметров системы и стохастичность ее поведения;

· уникальность и непредсказуемость поведения системы в конкретных условиях. Благодаря наличию активных элементов системы появляется как бы "свобода воли", но в то же время возможности ее ограничены имеющимися ресурсами (элементами, их свойствами) и характерными для определенного типа систем структурными связями;

· способность изменять свою структуру и формировать варианты поведения, сохраняя целостность и основные свойства (в технических и технологических системах изменение структуры, как правило, приводит к нарушению функционирования системы или даже к прекращению существования как таковой);

· способность противостоять энтропийным (разрушающим систему) тенденциям. В системах c активными элементами не выполняется закономерность возрастания энтропии и даже наблюдаются негэнтропийные тенденции, т. е. собственно самоорганизация;

· способность адаптироваться, к изменяющимся условиям. Это хорошо по отношению к возмущающим воздействиям и помехам, но плохо, когда адаптивность проявляется и к управляющим воздействиям, затрудняя управление системой;

· способность и стремление к целеобразованию;

· принципиальная неравновесность.

Легко видеть, что хотя часть этих особенностей характерна и для диффузных систем (стохастичность поведения, нестабильность отдельных параметров), однако в большинстве своем они являются специфическими признаками, существенно отличающими этот класс систем от других и затрудняющими их моделирование.

Рассмотренные особенности противоречивы. Они в большинстве случаев являются и положительными и отрицательными, желательными и нежелательными для создаваемой системы. Их не сразу можно понять и объяснить для того, чтобы выбрать и создать требуемою степень их проявления.

При этом следует иметь в виду важное отличие открытых развивающихся систем с активными элементами от закрытых. Пытаясь понять принципиальные особенности моделирования таких систем, уже первые исследователи отмечали, что, начиная с некоторого уровня сложности, систему легче изготовить и ввести в действие, преобразовать и изменить, чем отобразить формальной моделью. По мере накопления опыта исследования и преобразования таких систем это наблюдение подтверждалось, и была осознана их основная особенность - принципиальная ограниченность формализованного описания развивающихся, самоорганизующихся систем.

По этому поводу фон Нейманом была высказана следующая гипотеза: «У нас нет полной уверенности в том, что в области сложных задач реальный объект не может являться простейшим описанием самого себя, т.е. что всякая попытка описать его с помощью обычного словесного или формально-логического метода не приведет к чему-то более сложному, запутанному и трудновыполнимому...» .

Необходимость сочетания формальных методов и методов качественного анализа и положена в основу большинства моделей и методик системного анализа. При формировании таких моделей меняется привычное представление о моделях, характерное для математического моделирования и прикладной математики. Изменяется представление и о доказательстве адекватности таких моделей.

Основную конструктивную идею моделирования при отображении объекта классом самоорганизующихся систем можно сформулировать следующим образом: накапливая информацию об объекте, фиксируя при этом все новые компоненты и связи и применяя их можно получать отображения последовательных состояний развивающейся системы, постепенно создавая все более адекватную модель реального, изучаемого или создаваемого объекта. При этом информация может поступать от специалистов различных областей знаний и накапливаться во времени по мере ее возникновения (в процессе познания объекта).

Адекватность модели также доказывается как бы последовательно (по мере её формирования) путем оценки правильности отражения в каждой последующей модели компонентов и связей, необходимых для достижения поставленных целей.

Дата: 2019-12-10, просмотров: 242.