Как правило, при решении задач многокритериального выбора имеющиеся критерии для ЛПР неравноценны, т.е. одни из них более важны, чем другие. Будем считать, что ЛПР ознакомлено с приведенными выше определениями и способно в терминах коэффициентов относительной важности выразить неравноценность имеющихся критериев.
Пусть, например, ЛПР полагает, что для него i-й критерий важнее j-го с коэффициентом относительной важности . Спрашивается, каким образом учесть эту дополнительную информацию о критериях в процессе принятия решений?
Вспомним установленное ранее включение (30), из которого следует, что наилучшие решения находятся среди парето-оптимальных. После того, как ЛПР дополнительно сообщило указанную информацию об относительной важности критериев, можно надеяться, что с помощью этой информации будет построено более узкое множество, ограничивающее , чем . Иными словами, дополнительная информация позволит удалить из множества Парето какие-то заведомо «негодные» решения и, тем самым, сузить область дальнейшего поиска множества оптимальных решений.
Действительно, при достаточно общих предположениях относительно имеет место следующий результат.
Теорема. Пусть i -й критерий важнее j -го с коэффициентом относительной важности ( ). Тогда для вектор-функции вида
, (31)
для всех , кроме ,
выполнено
. (32)
Соотношения (32) наглядно иллюстрирует рисунок 2.
Рисунок 2.
В соответствии с приведенной теоремой учет указанной количественной информации об относительной важности критериев производится следующим образом. Сначала менее важный критерий в наборе критериев заменяется новым - , вычисленным в соответствии с формулой (31). Тем самым, образуется новый векторный критерий . Затем с помощью известных методов и алгоритмов находится множество Парето относительно векторного критерия . Если это множество оказывается достаточно узким (в том смысле, что все решения, входящие в него, практически одинаково предпочтительны для ЛПР), то в качестве наилучшего выбирается любое решение из . В противном случае следует попытаться получить от ЛПР новую дополнительную информацию об относительной важности какой-то другой пары критериев и учесть ее, построив еще более узкое множество, чем и т.д.
В результате выполнения указанных действий либо будет построено достаточно узкое множество Парето, внутри которого следует выбрать любое решение в качестве наилучшего, либо после учета всей имеющейся информации об относительной важности критериев очередное множество Парето окажется сравнительно широким и тогда для окончательного выбора наилучшего решения придется применить какой-нибудь подходящий известный метод решения многокритериальных задач.
Пример.
Проиллюстрируем сказанное простым примером. Для этого обратимся к описанной ранее задаче выбора наилучшего проектного решения.
Пусть имеется, скажем, три проекта, которые характеризуются следующими данными: стоимость строительства первого проекта составляет 15, второго – 13 и третьего – 10 млн. руб., а планируемая среднегодовая прибыль построенных предприятий равна 5, 3 и 2 млн. руб., соответственно.
Этой задаче отвечает следующая модель многокритериального выбора: , , где , . Заметим, что первые компоненты векторов оценок получили отрицательные значения, так как критерий (стоимость проекта) подлежит минимизации.
Легко видеть, что в данном случае . Предположим, что ЛПР стеснено в средствах, и поэтому считает первый критерий важнее второго с коэффициентом относительной важности . В соответствии с приведенной выше теоремой
, .
Тогда нетрудно вычислить , , . Следовательно, , так как > , > , и в соответствии с (6) получаем
.
Отсюда следует, что оптимальным может быть лишь третье решение .
Таким образом, в данном примере на основе лишь одной информации об относительной важности критериев удалось однозначно определить оптимальное решение.
Дата: 2019-12-10, просмотров: 257.