Раздел 1.1. Системный анализ проблемы интерпретации данных сейсмических наблюдений
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

В соответствии с методологическим принципом системного подхода представим объект нашего изучения (процесс интерпретации данных сей­смических наблюдений) в виде целостной системы взаимодействующих эле­ментов (верхняя часть рис. 1, а).

Будем называть интерпретацией данных сейсмических наблюдений про­цесс построения сейсмогеологической модели, которая не противоречит имеющейся априорной информации (наблюденному волновому полю, данным промысловой геофизики, геологической информации) и опыту гео­физика-интерпретатора. Из этого определения следует несколько важных методологических выводов:

1) процесс интерпретации является целенаправленным и поэтому должен быть управляемым;

2) в процессе интерпретации необходимо сопоставлять имеющуюся в данный момент сейсмогеологическую модель с априорными данными (в первую очередь с наблюденным волновым полем) на предмет анализа их противоречивости и нахождения способов ее устранения;

3) ввиду невозможности непосредственного сопоставления таких разно­родных объектов, как сейсмогеологическая модель и наблюденное волно­вое поле, в процессе интерпретации необходимо решать прямую задачу, т.е. вычислять волновое поле по сейсмогеологической модели.

Таким обра­зом, математическое моделирование становится неотъемлемой частью технологии интерпретации.

Конкретизируя схему рис. 1, а, получаем схему интерпретации данных сейсморазведки на основе математического моделирования, представлен­ную на рис. 1, б. Она включает операции шести уровней.

I уровень – получение исходной информации в результате геофизи­ческих измерений и сбора априорных геологических данных.

II уровень – обработка и анализ указанной информации с различ­ными целями. Полевые данные сейсморазведки обрабатываются в целях получения

§ годографов;

§ горизонтальных спектров скоростей или графи­ков VОГТ;

§ окончатель­ного временного разреза, который должен содержать минимум помех и искажений и максимум объективной информации о строении среды.

Данные промысловой геофизики обрабатываются главным образом для получения эффективной по сейсми­ческим критериям одномерной сейсмической модели. Наконец, важнейшую роль, определяющую впоследствии все решения геофизика-интерпретатора, играет предварительно выработанная гипотеза о строении разреза, не про­тиворечащая имеющимся геологическим представлениям.

III уровень состоит в создании исходной для итеративного процес­са интерпретации двумерной сейсмогеологической модели или модели нулевого приближения. Эта операция в принципе неформальна и требует максимального использования всей доступной информации I и II уровней. На этом же уровне производится выбор импульса, моделирующего сейсми­ческий сигнал (моделирование сейсмического сигнала).

На IV уровне для получения модельных аналогов промежуточных и окончательных результатов обработки полевых данных сейсморазведки решаются прямые задачи сейсморазведки.

V уровень – операции сравнения промежуточных и окончательных результатов обработки с их модельными аналогами, имеющие целью коли­чественную оценку сходства между ними.

VI уровень в рассматриваемой схеме представляют процессы принятий по коррекции параметров в общем случае всех операций уровней II–V. В частности, при наименее "глубокой" обратной связи корректируются параметры сейсмомоделирования, т. е. сейсмогеологическая модель и модель импульса падающей волны. Исходными данными для принятия таких решении являются оценки сходства ("рассогласования"), полу­чаемые на уровне V.

Раздел 1.2. Теоретические вопросы автоматизированной интерпретации данных сейсморазведки

Лекция 2

Таблица 1. Влияние параметров двумерного сейсмомоделирования
на характеристики отражений

Кинематические и динами­ческие характеристики отражений Параметры

А. Определяемые по отдельным трассам синтетического временного разреза

1. Время отражения 1. Локальные мощности пластов вышележащей толщи 2. Локальные скорости в пластах вышележащей толщи 3. Геометрия отражающей и промежуточных границ
2. Амплитуда отражения 1. Дифференциация скоростей и плотностей соседних слоев 2. Мощности слоев 3. Количество слоев, участвующих в формировании отражен­ной волны 4. Геометрия отражающей и промежуточных границ 5. Частота исходного сигнала
3. Преобладающая частота отражения 1. Частота исходного сигнала 2. Мощности слоев 3. Количество слоев, участвующих в формировании отражен­ной волны 4. Величины частотно-зависимого коэффициента поглощения
4. Полярность отражения 1. Полярность исходного сигнала 2. Порядок чередования слоев 3. Тип насыщающего флюида
5. Форма отражения: а) длительность волны, выраженная ко­ли­че­ством фаз 1. Количество слоев, участвующих в формировании отражен­ной волны 2. Мощности слоев 3. Ширина спектра исходного сигнала 4. Частота исходного сигнала
б) соотношение ампли­туд экстремумов (форма оги­ба­ю­щей) 1. Форма огибающей исходного сигнала 2. Количество слоев, участвующих в формировании отражен­ной волны 3. Дифференциация скоростей и плотностей соседних слоев 4. Мощности слоев

Б. Определяемые по синтетическому временному разрезу

6. Поведение линий t0 1. Геометрия отражающей и промежуточных границ 2. Скорости и величины их градиентов в пластах вышележа­щей толщи 3. Мощности пластов вышележащей толщи
7. Интерференция а) изменение времени между соседними фазами отражения 1. Градиент изменения мощностей слоев, участвующих в формировании отраженной волны 2. Градиент изменения скоростей слоев, участвующих в формировании отраженной волны
б) изменения амплиту­ды отдельных фаз отражения (измене­ние формы огибаю­щей) 1. Градиент изменения плотностей слоев, участвующих в формировании отраженной волны 2. Криволинейность границ, участвующих в формировании отраженной волны
8. Когерентность 1. Градиент изменения мощностей слоев, участвующих в формировании отраженной волны 2. Градиент изменения скоростей слоев, участвующих в фор­мировании отраженной волны 3. Градиент изменения плотностей слоев, участвующих в формировании отраженной волны 4. Криволинейность границ, участвующих в формировании отраженной волны
9. Расположение и интенсивность дифрагирован­ных волн 1. Наличие и местоположение объектов дифракции (точки выклинивания, примыкания; тектонические нарушения; резкие перегибы слоев, радиус кривизны которых меньше длины волны; участки резкого изменения пластовых пара­метров и т. п.) 2. Дифференциация скоростей и плотностей в дифрагирующих телах и вмещающих породах

Дата: 2019-12-22, просмотров: 303.