Билет 17.
(стр.92)
Артерии, по которым кровь течет от сердца к органам. Они бывают трех типов: эластические, мышечные, смешанного типа (мышечно-эластические).
Артерии эластического типа характеризуются выраженным развитием в их средней оболочке эластических структур (мембраны, волокна). К ним относятся сосуды крупного калибра, такие как аорта и легочная артерия. Артерии крупного калибра выполняют главным образом транспортную функцию. В качестве примера сосуда эластического типа рассматривается строение аорты.
Внутренняя оболочка аорты включает эндотелий, подэндотелиальный слой и сплетение эластических волокон. Эндотелий аорты человека состоит из клеток, различных по форме и размерам, расположенных на базальной мембране. В эндотелиальных клетках слабо развита эндоплазматическая сеть гранулярного типа. Подэндотелиальный слой состоит из рыхлой тонкофибриллярной соединительной ткани, богатой клетками звездчатой формы. В последних обнаруживается большое количество пиноцитозных пузырьков и микрофиламентов, а также эндоплазматическая сеть гранулярного типа. Эти клетки поддерживают эндотелий. В подэндотелиальном слое встречаются гладкие мышечные клетки (гладкие миоциты).
Глубже подэндотелиального слоя в составе внутренней оболочки расположено густое сплетение эластических волокон, соответствующее внутренней эластической мембране.
Внутренняя оболочка аорты в месте отхождения от сердца образует три карманоподобные створки («полулунные клапаны»).
Средняя оболочка аорты состоит из большого количества эластических окончатых мембран, связанны между собой эластическими волокнами и образующих единый эластический каркас вместе с эластическими элементами других оболочек.
Между мембранами средней оболочки артерии эластического типа залегают гладкие мышечные клетки, косо расположенные по отношению к мембранам.
Наружная оболочка аорты построена из рыхлой волокнистой соединительной ткани с большим количеством толстых эластических и коллагеновых волокон.
К артериям мышечного типа относятся преимущественно сосуды среднего и мелкого калибра, т.е. большинство артерий организма (артерии тела, конечностей и внутренних органов).
В стенках этих артерий имеется относительно большое количество гладких мышечных клеток, что обеспечивает дополнительную нагнетающую силу их и регулирует приток крови к органам.
В состав внутренней оболочки входят эндотелий с базальной мембраной, подэндотелиальный слой и внутренняя эластическая мембрана.
Средняя оболочка артерии содержит гладкие мышечные клетки, между которыми находятся соединительнотканные клетки и волокна (коллагеновые и эластические). Коллагеновые волокна образуют опорный каркас для гладких миоцитов. В артериях обнаружен коллаген I, II, IV, V типа. Спиральное расположение мышечных клеток обеспечивает при сокращении уменьшение объема сосуда и проталкивание крови. Эластические волокна стенки артерии на границе с наружной и внутренней оболочками сливаются с эластическими мембранами.
Гладкие мышечные клетки средней оболочки артерий мышечного типа своими сокращениями поддерживают кровяное давление, регулируют приток крови в сосуды микроциркуляторного русла органов.
На границе между средней и наружной оболочками располагается наружная эластическая мембрана. Она состоит из эластических волокон.
Наружная оболочка состоит из рыхлой волокнистой соединительной ткани. В этой оболочке постоянно встречаются нервы и кровеносные сосуды, питающие стенку.
Артерии мышечно-эластического типа. К ним относятся, в частности, сонная и подключичная артерии. Внутренняя оболочка этих сосудов состоит из эндотелия, расположенного на базальной мембране, подэндотелиального слоя и внутренней эластической мембраны. Эта мембрана располагается на границе внутренней и средней оболочек.
Средняя оболочка артерий смешанного типа состоит из гладких мышечных клеток, спирально ориентированных эластических волокон и окончатых эластических мембран. Между гладкими мышечными клетками и эластическими элементами обнаруживается небольшое количество фибробластов и коллагеновых волокон.
В наружной оболочке артерий можно выделить два слоя: внутренний, содержащий отдельные пучки гладких мышечных клеток, и наружный, состоящий преимущественно из продольно и косо расположенных пучков коллагеновых и эластических волокон и соединительнотканных клеток.
Возрастные изменения. Развитие сосудов под влиянием функциональной нагрузки заканчивается примерно к 30 годам. В дальнейшем в стенках артерий происходит разрастание соединительной ткани, что ведет к их уплотнению. После 60—70 лет во внутренней оболочке всех артерий обнаруживаются очаговые утолщения коллагеновых волокон, в результате чего в крупных артериях внутренняя оболочка по размерам приближается к средней. В мелких и средних артериях внутренняя оболочка разрастается слабее. Внутренняя эластическая мембрана с возрастом постепенно истончается и расщепляется. Мышечные клетки средней оболочки атрофируются. Эластические волокна подвергаются зернистому распаду и фрагментации, в то время как коллагеновые волокна разрастаются. Одновременно с этим во внутренней и средней оболочках у пожилых людей появляются известковые и липидные отложения, которые прогрессируют с возрастом. В наружной оболочке у лиц старше 60—70 лет возникают продольно лежащие пучки гладких мышечных клеток.
Эпителий представляет собой пласты, покрывающие внутренние и внешние поверхности организмов. Эпителии объединяют общие морфофункциональные признаки:
1. Все виды эпителиальных тканей состоят только из клеток - эпителиоцитов. Между клетками имеютмя тонкие межмембранные щели, в которых нет межклеточного вещества. В них располагается надмембранный комплекс - гликокаликс, сюда поступают вещества, поступающие в клетки и выделяемые ими.
2. Клетки всех эпителиев располагаются плотно друг к другу, образуя пласты. Только в виде пластов эпителии могут функционировать. Клетки соединяются друг с другом различными способами (десмосомами, щелевыми или плотными контактами).
3. Эпителии располагаются на базальной мембране, отделяющей их от подлежащей соединительной ткани. Базальная мембрана толщиной 100 нм-1 мкм состоит из белков и углеводов. Кровеносные сосуды не проникают внутрь эпителиев, поэтому их питание происходит диффузно через базальную мембрану.
4. Клетки эпителиев обладают морфофункциональной полярностью. В них различают два полюса: базальный и апикальный. Ядро эпителиоцитов смещено к базальному полюсу, а почти вся цитоплазма размещается на апикальном полюсе. Здесь могут располагаться реснички и микроворсинки.
5. У эпителиев хорошо выражена способность к регенерации, в их составе имеются стволовые, камбиальные и дифференцированные клетки.
Эпителиоциты могут иметь органоиды специального назначения:
- реснички (эпителий воздухоносных путей);
- микроворсинки ( эпителий кишечника и почек);
- тонофибриллы ( эпителий кожи).
В зависимости от выполняемой функции эпителий делится на покровный, всасывающий, выделительный, секреторный и другие. Морфологическая классификация делит эпителии в зависимости от формы эпителиоцитов и количества их слоев в пласте. Различают однослойные и многослойные эпителии.
значительному растяжению при наполнении мочой. Состоит из трех слоев: базального, промежуточного и покровного. Клетки базального слоя мелкие, разной формы, являются камбиальными, лежат на базальной мембране. Промежуточный слойсостоит из светлых крупных клеток, количество рядов которых сильно колеблется в зависимости от степени наполнения органа. Клетки покровного слоя очень крупные, многоядерные или полиплоидные, часто выделяют слизь, предохраняющую поверхность эпителиального пласта от действия мочи.
Железистый эпителий
Железистый эпителий - широко распространенный вид эпителиальной ткани, клетки которого вырабатывают и выделяют вещества различной природы, названные секретами. По своим размерам, форме, структуре железистые клетки очень разнообразны, как и вырабатываемые ими секреты.
Специальные органеллы (микроворсинчатая, или щеточная, каемка и реснички) на апикальной поверхности клеток, их способность к ороговению (последний признак относится только к многослойным плоским эпителиям). Реснички представляют собой выросты цитоплазмы, в которые находится осевая нить, или аксонема. Последняя представляет собой каркас из микротрубочек, Длина ресничек может составлять 2-10 нм, а их количество на поверхности одной клетки достигает нескольких сотен. Микроворсинки - это выросты цитоплазмы клетки диаметром О,1 мкм и длиной 1 мкм . Они многократно увеличивают поверхность клетки, на которой может происходить (например, в тонком кишечнике) расщепление и всасывание веществ. На апикальной поверхности эпителиальной клетки тощей кишки может находиться до нескольких тысяч микроворсинок, которые формируют так называемую щёточную каёмку, увеличивающую поверхность клетки более чем в 30 раз. Каждая микроворсинка имеет внутренний каркас, образованный пучком из примерно 40 микрофиламентов. Пучок ориентирован вдоль продольной оси ворсинки и закреплён в апикальной части микроворсинки особыми белковыми мостиками (молекулами минимиозина), фиксирующимися на внутренней поверхности плазмолеммы. Микрофиламенты пучка соединены между собой поперечными сшивками из белков виллина и фимбрина. В области основания микроворсинки микрофиламенты пучка вплетаются в терминальную сеть, содержащую миозиновые филаменты. Предполагается, что конфигурация и тонус микроворсинок обусловливаются взаимодействием актиновых и миозиновых филаментов.
Базальная мембрана связывает эпителий и подлежащую соединительную ткань; на светооптическом уровне на препаратах она имеет вид бесструктурной полоски, не окрашивается гематоксилином-эозином, однако выявляется солями серебра и дает интенсивную ШИК-реакцию. На ультраструктурном уровне в ней обнаруживаются два слоя: (1) светлая пластинка прилежащая к плазмолемме базальной поверхности эпителиоцитов, (2) плотная пластинка обращенная в сторону соединительной ткани. Эти слои различаются содержанием белков, гликопротеинов и протеогликанов. Нередко описывают еще третий слой - ретикулярную пластинку (lamina reticularis), содержащую ретикулярные фибриллы, однако многие авторы рассматривают ее как компонент соединительной ткани, не относя к собственно базальной мембране. Базальная мембрана способствует поддержанию нормальной архитектоники, дифференцировки и поляризации эпителия, обеспечивает его прочную связь с подлежащей соединительной тканью, осуществляет избирательную фильтрацию питательных веществ, поступающих в эпителий.
Препараты 16 - Пластинчатая костная ткань, 24 - Гладкая мышечная ткань.Эл. гр. 29 - клетки гипофиза
Билет 18.
Развитие зуба. Гистогенез зуба. Образование дентина в коронке и корне зуба. Особенности их строения. Плащевой и околопульпарный дентин. Предентин
Зуб является производным слизистой оболочки ротовой полости зародыша. Эта оболочка выстлана многослойным плоским неороговевающим эпителием эктодермального происхождения (возможно-производным прехордальной пластинки), под которым находится мезенхима, позже образующая соединительную ткань. Из этих двух зачатков (эпителия и мезенхимы) в последующем развивается зуб, причем из эпителия формируется только эмаль зуба с покрывающей ее кутикулой, а из мезенхимы – все остальные ткани: дентин, цемент, пульпа, периодонт.
В развитии зуба выделяют 3 периода:
4. Закладка зубных зачатков (с 6-7-й недели до конца 3-го месяца эмбриогенеза)
5. Формирование и дифференцировка зубных зачатков
6. Гистогенез тканей зуба
(стр. 89- третий этап)
Между дентинными канальцами располагаются коллагеновые волокна, структура и расположение которых различны в разных участках дентина. Соответственно этому разделяют наружный (плащевой) и внутренний (околопульпарный) дентин. В наружном слое преобладают более мощные и толстые волокна Корфа, идущие в радиальном направлении параллельно дентинным канальцам. Особенно четко это выражено на верхушке коронки зуба. Данная группа волокон закладывается в эмбриогенезе раньше и проходит в своем развитии фазу преколлагеновых волокон с их последующим преобразованием в коллаген. В более широкой внутренней зоне, прилегающей к пульпе (околопульпарный дентин), располагаются более тонкие волокна Эбнера, идущие тангенциально к поверхности дентина и почти перпендикулярно дентинным канальцам.
Это более поздняя генерация волокон, построенных сразу из коллагена. С направлением волокон Эбнера совпадает ход контурных линий Оуэна, лежащих концентрически на поперечных шлифах дентина. Полагают, что их наличие (подобно линиям Ретциуса в эмали) связано с периодичностью роста и обызвествления дентина.
Самая внутренняя часть околопульпарного дентина, шириной 10-50 мкм, прилегающая к слою одонтобластов, также не обызвествлена и носит название предентина. Она является зоной постоянного роста дентина. У взрослого человека образование дентина ослабевает, но совсем не прекращается, оно идет за счет постепенного наслоения нерастворимых фосфатов в предентине. Это ведет к постепенному сужению пульпарной полости. Однако такой дентин, возникший после прорезывания зубов (вторичный, иррегулярный, в отличие от первичного, возникшего в эмбриогенезе), помимо более медленных темпов образования, отличается менее правильной структурой. У него изменен ход и число дентинных канальцев, коллагеновых фибрилл, а также нарушено обызвествление (оно мб усилено, и ослаблено). Продукция дентина в предентине резко усиливается при повреждении эмали и дентина (кариес, препарирование полости), а при местном воспалении нарушении обмена веществ в пульпе зуба возможно образование дентиклей – тельца, состоящие из дентина или дентиноподобной ткани, различные по размеру и форме (ист. Развития-одонтобласты). Таким образом репаративная регенерация дентина имеет место, но не является полноценной.
К периферическим кроветворным и иммунным органам относятся лимфатические узлы, селезёнка, а также миндалины и другие лимфоидные образования в составе слизистых оболочек полых внутренних органов.
Селезёнка - самый крупный орган периферической иммунной системы, располагающийся по ходу кровеносной системы.
Основные функции органа следующие:
- образование Т- и В-лимфоцитов, поступающих в кровь;
- участие в формировании гуморального и клеточного иммунитета, задержка антигенов, циркулирующих в крови;
разрушение старых и повреждённых эритроцитов и тромбоцитов:
депонирование крови и накопление тромбоцитов (до 1 /3 общего их числа в организме).
Развитие селезёнки начинается на 5-й неделе эмбриогенеза из мезенхимы.
Строение. Селезёнка снаружи покрыта капсулой, состоящей из волокнистой соединительной ткани, гладких миоцитов и выстланной с передней поверхности мезотелием. От капсулы внутрь отходят перекладины - трабекулы. анастомозирующие между собою. Капсула и трабекулы образуют опорно-сократительный аппарат селезенкиПаренхима селезенки включает два отдела с разными функциями: белую и красную пульпу.
Белая пульпа представляет собой совокупность лимфоидной ткани, которая расположена компактными тяжами вдоль центральных артерий селезенки и включает:
- лимфатические периартериальные муфты или влагалища (Т-зависимые зоны),
- лимфатические узелки (В-зависимые зоны),
- маргинальную зону (Т- и В-зависимую).
Белая пульпа селезёнки составляет около 20% объёма органа. К ее функциям относят:
- улавливание из крови циркулирующих антигенов, взаимодействие лимфоцитов с антигенами, антигенпредставляющими клетками и друг с другом,
- начальные этапы антигензависимой пролиферации и дифференцировки.
Красная пульпа (около 75% объёма органа) включает венозные синусы и селезеночные или пульпарные тяжи (тяжи Бильрота). К её функциям относятся:
депонирование зрелых форменных элементов крови;
- контроль состояния и разрушение старых и повреждённых эритроцитов и тромбоцитов;
- фагоцитоз инородных частиц;
обеспечение дозревания лимфоидных клеток и превращения моноцитов в макрофаги.
Венозные синусы - тонкостенные анастомозирующие сосуды диаметром 12-50 мкм неправильной формы, образующие основную часть красной пульпы. Они выстланы эндотелиальными клетками необычной веретеновидной (палочкообразной) формы с узкими (13 мкм) щелями между ними.
Кровообращение в селезёнке обладает рядом особенностей, обеспечивающих выполнение её функций. В ворота органа входит селезёночная артерия, ветви которой проникают в трабекулы (трабекулярные артерии) и далее - в пульпу (пульпарные артерии). В пульпе адвентиция такой артерии обильно инфильтрируется лимфоидной тканью, и артерия получает название центральной. Центральная артерия - мышечного типа, мелкая, по мере прохождения в белой пульпе отдаёт коллатерали в виде капилляров, снабжающих лимфоидную ткань и заканчивающихся в маргинальной зоне. Дистальнее центральная артерия разветвляется на несколько (2-6) кисточковых артериол, распадающихся на эллипсоидные (гильзовые) капилляры. Последние окружены эллипсоидом, или гильзой, состоящей из ретикулярной ткани, а также лимфоцитов и макрофагов. Далее они либо изливают кровь непосредственно в венозные синусы (закрытое кровообращение), либо между ними - в тяжи красной пульпы (открытое кровообращение), откуда она также попадает в венозные синусы и далее - в пульпарные и трабекулярные вены, собирающиеся в селезеночную вену.
Клеточная теория. В настоящее время клеточная теория гласит: 1) клетка является наименьшей единицей живого, 2) клетки разных организмов принципиально сходны по своему строению, 3) размножение клеток происходит путем деления исходной клетки, 4) многоклеточные организмы представляют собой сложные ансамбли клеток и их производных, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные между собой межклеточными, гуморальными и нервными формами регуляции.
1. Клетка — наименьшая единица живого. Представление о клетке как о наименьшей самостоятельной живой единице было известно из работ Т.Шванна и др. Р.Вирхов считал, что каждая клетка несет в себе полную характеристику жизни. Согласно одному из современных определений, живые организмы представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, важнейшими функционирующими компонентами которых являются белки и нуклеиновые кислоты. Живому свойствен ряд совокупных признаков: способность к воспроизведению (репродукции), использование и трансформация энергии, метаболизм, чувствительность, адаптация, изменчивость. Такую совокупность этих признаков впервые можно обнаружить только на клеточном уровне.
2. Сходство клеток разных организмов по строению. Клетки могут иметь самую разнообразную внешнюю форму: шаровидную (лейкоциты), многогранную (клетки железистого эпителия), звездчатую и разветвленно-отростчатую (нервные и костные клетки), веретеновидную (гладкие мышечные клетки, фибробласты), призматическую (кишечный эпителиоцит), уплощенную (эндотелиоцит, мезотелиоцит) и др.
3. Размножение клеток путем деления исходной клетки. Т. Шванн в своих обобщениях подчеркивал одинаковость принципа развития клеток как у животных, так и у растений. Сформулированное позднее Р. Вирховым положение «всякая клетка от клетки» можно считать биологическим законом. Размножение клеток, прокариотических и эукариотичес-ких, происходит только путем деления исходной клетки, которому предшествует воспроизведение ее генетического материала (репродукция ДНК). У эукариотических клеток единственно полноценным способом деления является митоз, или непрямое деление. При этом образуется специальный аппарат клеточного деления, клеточное веретено, с помощью которого равномерно и точно по двум дочерним клеткам распределяют хромосомы, до этого удвоившиеся в числе. Митоз наблюдается у всех эукариотических, как растительных, так и животных клеток.
4. Клетки как части целостного организма. Каждое проявление деятельности целого организма, будь то реакция на раздражение или движение, иммунные реакции и многое другое, осуществляется специализированными клетками.
Многоклеточные организмы представляют собой сложные ансамбли специализированных клеток, объединенных в целостные, интегрированные системы тканей и органов, подчиненные и связанные межклеточными, гуморальными и нервными формами регуляции Цитолеммавыполняет разграничительную функцию и регулирует движение ионов и молекул в клетку и из клетки, а также участвует в процессах фагоцитоза, пиноцитоза и экзоцитоза. Цитолемма представляет собой элементарную биологическую мембрану, состоит из двойного слоя липидов и белков - интегральных, полуинтегральных и периферических (транспортных, или белков-переносчиков). Кроме того, с липидами и белками связаны молекулы углеводов, образуя с ними сложные соединения - гликолипиды и гликопротеиды. Они формируют надмембранный комплекс - гликокаликс, в составе которого есть структуры, способные специфически связывать определенные химические вещества и называемые рецепторами. С внутренней стороны мембраны располагается подмембранный (субмембранный) комплекс, включающий в себя микрофиламенты. микрофибриллы и микротрубочки цитоскелета, а также актомиозиновый комплекс.
Система биологических мембран клетки включает не только цитолемму и кариолемму (в составе последней имеются две биологические мембраны и между ними - перинуклеарное пространство), но и группу органелл мембранного строения: эндоплазматическую сеть, комплекс Гольджи, митохондрии, лизосомы и пероксисомы.
Все мембраны клетки по особенностям строения и функции разделяются на два подтипа:
1) экзоплазматические мембраны, экзомембраны, (цитолемма, мембрана вокруг пузырьков, внутренняя мембрана митохондрий и ядерной оболочки, гранулярную эндоплазматическую сеть, мембрана лизосом и часть мембран комплекса Гольджи) - мембраны с плотной упаковкой молекул более сложного состава, с непластическими, консервативными свойствами, т.е. не способные превращаться друг в друга или в эндомембраны;
2) эндоплазматические мембраны, или эндомембраны, - остальные мембраны клетки с пластическими свойствами
Препараты 5 - Селезёнка, 12 - Спинной мозг. Эл. гр 14 – хондроциты
Билет 19.
Дентин – основная ткань зуба, он образует большую часть коронки, шейки и корня. В составе дентина 70-72% минеральных солей (главным образом это фосфат кальция и магния с примесью фторида кальция), 20% органических веществ (среди которых почти 90% составляет коллаген 1-го типа). Имеются также гликозаминогликаны, протеогликаны, гликопротеиды, фосфопротеины, аминокислоты, глюкоза, щелочная фосфотаза и др. ферменты, и около 10% воды. Благодаря своему составу и свойствам дентин препятствует растрескиванию эмали (в 4-5 раз более твердой, но хрупкой) .
Дентин образуется одонтобластами мезенхимы зубного сосочка. Очень важно, что при его формировании, с отложением все новых слоев дентина, тела клеток не входят в состав ткани, а все дальше отодвигаются от дентино-эмалевой границы вглубь сосочка, оказываясь в дальнейшем лежащими в наружном слое пульпы зуба у внутреннего края образованного ими дентина. Однако при этом внутри дентина в особых, радиально расположенных полостях – дентинных канальцах, или трубочках диаметром 1-4 мкм, остаются замурованными отходящие от верхушек одонтобластов их цитоплазматические отростки. Это так называемые волокна Томса, ветвящиеся и анастомозирующие между собой. Вокруг отростков одонтобластов в дентинных канальцах содержится тканевая жидкость, отдельные необызвествленные коллагеновые фибриллы. В некоторых канальцах выявляются также эфферентные нервные волокна, влияющие на активность одонтобластов и проникающие обычно вглубь лишь на несколько микрометров. Межклеточное вещество между дентинными канальцами, образованное одонтобластами, вначале построено из коллагеновых и преколлагеновых фибрилл, а также органического матрикса основного вещества. В последующем наступает фаза его минерализации, что напоминает гистогенез кости. (можно глянуть гистогенез кости потом). Количество канальцев в дентине, их форма и размеры неодинаковы в различных участках. Более плотно они располагаются около пульпы, а затем веерообразно расходятся, становясь при этом тоньше. В дентине коронки они почти не дают боковых ветвей и распадаются на мелкие веточки лишь около эмали. Некоторые канальцы через неровную, фестончатую границу проникают в эмаль и заканчиваются в ней колбовидными вздутиями, особенно в области жевательных бугорков. В дентине корны зуба канальцы ветвятся на всем протяжении, но особенно густую сеть анастомозирующих аркад формируют у границы с цементом, а некоторые канальцы могут проникать в цемент. В коронке канальцев больше, чем в корне зуба. На единицу поверхности дентина в резце их приходится в 1,5 раза больше, чем в моляре (этим объясняют повышенную чувствительность резцов к болевым раздражениям).
Функциональное значение волокон Томса и дентинных канальцев состоит в обеспечении трофики, процессов обызвествления дентина и эмали, а также в поддержании обмена веществ в этих тканях. Возможно, они участвуют в обеспечении чувствительности дентина к раздражении при разрушении эмали.
Согласно рецепторной теории чувствительности дентина одонтобласты сами воспринимают болевые, температурные, механические, химические, электрические и др. раздражения. В этом случае содержащаяся в отростках клеток ацтилхолинэстераза может играть роль в передаче импульса на нервные волокна, оплетающие тела одонтобластов. Существует также гипотеза непосредственной нервной стимуляции, согласно которой восприятие раздражения осуществляется нервными окончаниями в области дентино-эмалевой границы(наличие таких окончаний отрицается большинством исследователей.)
В настоящее время более обоснованной считается гидродинамическая гипотеза, которая лучше объясняет данные многочисленных клинических и экспериментальных наблюдений. Согласно этой гипотезе различные воздействия на дентинные трубочки (температурные, механические, высушивание, аппликация гипертоничсеких растворов) обуславливают быстрые ударные перемещения дентинной жидкости, которые вызывают раздражение свободных нервных окончаний в пульпе зуба.
Стенка дентинного канальца содержит густую сеточку преколлагеновых волокон и обызвествлена сильнее остального вещества дентина. Изнутри она покрыта тонкой пленкой органического вещества – пограничной пластинкой (мембрана Неймона). Эта пластинка проходит по всей длине дентинной трубочки, содержит высокие концентрации ГАГ и на электроннограммах имеет вид тонкого плотного мелкозернистого слоя.
Между дентинными канальцами располагаются коллагеновые волокна, структура и расположение которых различны в разных участках дентина. Соответственно этому разделяют наружный (плащевой) и внутренний (околопульпарный) дентин. В наружном слое преобладают более мощные и толстые волокна Корфа, идущие в радиальном направлении параллельно дентинным канальцам. Особенно четко это выражено на верхушке коронки зуба. Данная группа волокон закладывается в эмбриогенезе раньше и проходит в своем развитии фазу преколлагеновых волокон с их последующим преобразованием в коллаген. В более широкой внутренней зоне, прилегающей к пульпе (околопульпарный дентин), располагаются более тонкие волокна Эбнера, идущие тангенциально к поверхности дентина и почти перпендикулярно дентинным канальцам.
Это более поздняя генерация волокон, построенных сразу из коллагена. М направлением волокон Эбнера совпадает ход контурных линий Оуэна, лежащих концентрически на поперечных шлифах дентина. Полагают, что их наличие (подобно линиям Ретциуса в эмали) связано с периодичностью роста и обызвествления дентина.
Межклеточное вещество дентина представлено основным веществом, содержащим преимущественно протеогликаны, и коллагеновыми волокнами, которые связаны с кристаллами гидроксиапатита. Кристаллы обнаруживаются не только между коллагеновыми фибриллами и на их поверхности, но и внутри сами фибрилл и имеют вид уплощенных шестигранных призм или пластинок размерами 3-3,5х 20-60 нм. Это значительно меньше, чем кристаллы гидроксиапатита и эмали. Большая часть таких кристаллов расположена почти под прямым углом к дентинным канальцам. Однако есть в дентине и совсем особая форма отложения извести, при которой обычные кристаллы группируются радиально(звездочкой) Затем такие комплексы сливаясь междусобой придают обызвествленным участкам шаровидную форму , образуя глобулы или калькосфериты.
Легкие:
Легкое состоит из воздухоносных путей - бронхов (бронхиальное дерево) и легочных пузырьков или альвеол.
Бронхиальное дерево - правый и левый главные бронхи (внелегочные долевые бронхи) -> зональные внелегочные -> внутрилегочные сегментарные -> субсегментарные бронхи -> бронхиолы -> терминальные бронхиолы -> респираторные отделы легкого.
Гортань - Слизистая оболочка, выстлана многорядным мерцательным эпителием. Собственная пластинка слизистой имеет обычное строение. В передней ее части содержатся смешанные белково-слизистые железы. Здесь же - гортанная миндалина.
В средней части гортани - истинные и ложные голосовые связки и покрытые многослойным плоским эпителием. Выше и ниже этих связок располагаются смешанные белково-слизистые железы.
Фиброзно-хрящевая оболочка состоит из гиалинового и эластического хрящей, а ее адвентиция - из соединительной ткани.
Трахея - диаметр 20-25 мм, В стенке органа имеются слизистая, подслизистая, фиброзно-хрящевая и адвентициальная оболочки.
Слизистая оболочка выстлана многорядным мерцательным эпителием, в составе которого содержатся реснитчатые, бокаловидные, гормонопродуцируюшие и базальные клетки.
Подслизистая основа (оболочка) представлена рыхлой волокнистой соединительной тканью и концевыми отделами белково-слизистых желез.
В состав фиброзно-хрящевой оболочки входит около двадцати хрящей, имеющих подковообразную форму.
Главный бронх диаметр около 15 мм. Те же четыре оболочки, что и трахея, с отличиями: в составе мерцательного эпителия встречаются еще и секреторные клетки (клетки Клара), вырабатывающие ферменты, расщепляющие сурфактант.
В собственной пластинке слизистой большее количество эластических волокон. Появляется мышечная пластинка слизистой оболочки. Подслизистая и адвентициальная оболочки сходны с трахеей. Фиброзно-хрящевая оболочка состоит из замкнутых колец гиалинового хряща, окруженных фиброзной соединительной тканью.
Крупные бронхи диаметр от 5 до 10 мм, те же оболочи, что и главных бронхах. Фиброзно-хрящевая оболочка - гиалиновые пластины неправильной формы.
Бронхи среднего калибра диаметр от 2 до 5 мм тоже четыре оболочки. Многорядный мерцательный эпителий становится более низким, уменьшается количество бокаловидных клеток. Мышечная пластинка слизистой развита сильнее. Белково-слизистые железы подслизистой оболочки располагаются группами между островками хряща. Адвентициальная оболочка та де.
Мелкие бронхи (диаметром 1-2 мм) постепенно исчезают хрящевые пластинки и железы. Стенка состоит только из двух оболочек: слизистой (двурядный мерцательный эпителий, собственной пластинкой и мышечная пластинка) и адвентициальной.
Конечные бронхиолы диаметр около 0,5 мм. Выстланы однослойным кубическим мерцательным эпителием (есть щеточные, секреторные и бескаемчатые клетки). Мышечный слой слизистой - отдельные пучки гладких миоцитов с циркулярным или косьм их направлением, между ними расположены эластические волокна.
Структурно-функциональной единицей респираторного отдела легкого является ацинус, в котором осуществляется газообмен между кровью и воздухом альвеол.
Ацинус респираторная бронхиолой первого порядка -> респираторные бронхиолы 2го -> 3го порядка -> альвеолярные ходы -> двуа альвеолярных мешочка. Ацинусы отделены друг от друга соединительнотканными прослойками; 12-18 ацинусов = легочная долька.
Респираторные бронхиолы выстланы однослойным кубическим эпителием. Заполненные воздухом пузырьки (мешочки) диаметром около 0,25 мм.
Внутренняя поверхность альвеол выстлана однослойным плоским эпителием с двумя основными видами клеток: 1) респираторными альвеолоцитами первого типа: 2) большими секреторными эпителиоцитами (альвеолоцитами второго типа).
Альвеолоциты первого типа выстилают до 90-95% поверхности альвеол. Обращенная в просвет альвеол поверхность неровная. В цитоплазме - митохондрии и пиноцитозные пузырьки; др. органоиды развиты слабо. Эти клетки участвуют в образовании аэрогематического барьера и выполняют функцию газообмена.
Альвеолоциты второго типа занимают 5% поверхности. Высокие (7-8 мкм), имеют кубическую форму. Клетки богаты органоидами, имеют высокий уровень метаболизма. На поверхности находятся микроворсинки, а в цитоплазме - ЭПС, комплекс Гольджи, крупные митохондрии. Белковые, углеводные и липидные компоненты пластинчатых телец распределяются по всей поверхности эпителиальной выстилки альвеол и образуют сурфактант. Газообмен идет путем простой диффузии газов в соответствии с их концентрациями в капиллярах и альвеолах.
Состав аэрогематического барьера: 1) безъядерная часть респираторного альвеолоцита (0.2 мкм), 2) базальные мембраны эпителия альвеолы и эндотелия сосуда (0,1 -0,2 мкм), 3) уплощенная безъядерная часть эндотелиальной клетки капилляра (0,2 мкм).
Кровоснабжение в легких: 1 система - малый круг кровообращения - обогащения венозной крови кислородом. 2 система сосудов - бронхиальные артерии, насыщенная кислородом кровь для питания тканей бронхиального дерева.
(стр.23)
Развивается из мезенхимы. Структурная единица этой ткани - гладкий миоцит - клетка веретеновидной формы, могут иметь звёздчатую форму и увеличиваться (матка, эндокард сердца). В центре клетки палочковидное ядро. При сокращении гладкие миоциты принимают эллипсовидную форму. В цитоплазме есть все органоиды общего значения, сосредоточены вокруг ядра. Митохондрий много, а комплекс Гольджи и эндоплазматическая сеть развиты слабо.
Специфический аппара: Цитолемма образует многочисленные впячивания - пиноцитозные пузырьки и кавеолы, доставляющие в цитоплазму ионы кальция.
Сократительный аппара: представлен регуляторными белками тропонином и тропомиозином + актиновыми и миозиновыми протофибриллами, расположение которых преимущественно продольное + сетью промежуточных фибрилл, препятствующих избыточной деформации клетки при сокращении. Эти протофибриллы оканчиваются на плотных тельцах, разбросанных по цитоплазме и прикрепленных к плазматической мембране. Плотные тельца содержат белок – альфаактинин.
В гладкой мышечной ткани имеются нервные окончания симпатического и парасимпатического отделов вегетативной нервной системы, причем один нервно-мышечный синапс приходится примерно на одну клетку из ста, а затем импульсы, стимулирующие сокращение, передаются с одной клетки на другую через нексусы. Кроме того, часть нервных волокон оканчивается не на миоцитах, а между ними.
Опорный аппарат гладкомышечной ткани представлен базалъной мембраной, окружающей каждый миоцит, многочисленными ретикулярными, эластическими и тонкими коллагеновыми волокнами, которые образуют трёхмерную сеть - эндомизий, который объединяет миоциты в пучки. Между пучками прослойки соединительной ткани - перимизий, в нем находятся кровеносные сосуды, нервные волокна и окончания интрамуральные ганглии парасимпатического отдела ВНС.
Физиологическая регенерация осуществляется компенсаторной гипертрофией миоцитов, и делением этих клеток.
При репаративной регенерации двумя путями: делением миоцитов и одновременно превращением соединительнотканных элементов типа адвентициалъных клеток и миофибробластов в гладкомышечные клетки.
Препараты 53 - Прямой остеогенез,44 - Дно желудка. Эл. .гр. 31 – энамелобласты
Билет 20.
Поддерживающий аппарат зуба (пародонт) включает: цемент; периодонт; стенку зубной альвеолы; десну.
(из методички: строение тканей зуба, периодонт, примерно 97 стр)
Слюнные железы.
Функция – выработка слюны (99% воды, минеральные соли и органические вещества (в том числе гормоны, ряд биологически активных веществ), 50 ферментов (амилаза, мальтаза, гиалуронидаза, протеазы, пептидазы, саливалин, гландулин, и др.)). - предохраняет слизистую оболочку и зубы от высыхания.
Слюнные железы являются сложными альвеолярными или альвеолярно-трубчатыми образованиями и состоят из концевых секреторных отделов и системы выводных протоков. Железы имеют дольчатое строение. По механизму отделения секрета - мерокриновые.
Развитие слюнных желез идет путем врастания тяжей многослойного плоского эпителия ротовой полости (эктодермального типа) в подлежащую мезенхиму, с последующим многократным ветвлением формирующихся протоков вплоть до образования концевых секреторных отделов.
Белковый (серозный) концевой отдел выделяет жидкий секрет, богатый ферментами. Он состоит из сероцитов и миоэпителиоцитов.
Слизистый концевой отдел образует более густой, вязкий секрет с большим содержанием муцина - вещества, в составе которого имеются гликозаминогликаны. Слизистый отдел состоит из мукоцитов и миоэпителиоцитов.
Смешанные концевые отделы состоят из трех типов клеток: мукоциты занимают центральную часть концевого отдела, сероциты охватывают слизистые клетки в виде шапочки, колпачка (полулуние Джиануцци).
Выводные протоки. Вставочный проток начинается следом за концевым отделом, имеет узкий просвет, как правило, сильно ветвится. Выстлан изнутри уплощенным или кубическим эпителием; наружный слой образуют миоэпителиоциты. Исчерченный проток (слюнная трубка) - продолжением вставочного - часто образуют ампулярные расширения. Они выстланы высокими призматическими, вокруг которых вторым слоем располагаются миоэпителиоциты. Внутридрльковый проток (связующий отдел) - короткий крупный проток, выстланный двуслойным кубическим эпителием. Междольковый выводной проток также выстлан двуслойным эпителием, имеет базальный и поверхностный слой кубических клеток; располагается в междольковой соединительной ткани.
Околоушная желеш - разветвленная альвеолярная железа, выделяющая секрет белкового характера - дольчатое строение, покрыта плотной соединительнотканной капсулой. В составе долек железы - белковые (серозные) концевые отделы, вставочные, исчерченные и малочисленные внутридольковые протоки. В междольковой соединительной ткани располагаются междолъковые выводные протоки и кровеносные сосуды. Устье общего протока расположено на уровне второго верхнего большого коренного зуба. Проток выстлан многослойным кубическим, а в устье - многослойным плоским эпителием.
Подчелюстная железа - разветвленная альвеолярно-трубчатая. Выделяет смешанный белково-слизистый секрет. С поверхности железа окружена соединительнотканной капсулой. В дольках имеются белковые и смешанные белково-слизистые концевые отделы с большим количеством сероцитов. Междольковые протоки выстланы сначала двуслойным, а затем многослойным эпителием. Проток подчелюстной железы открывается под языком на переднем крае его уздечки.
Подъязычная железа - разветвленная альвеолярно-трубчатая, выделяет смешанный слизисто-белковый секрет с преобладанием слизистого компонента. В ней имеются концевые секреторные отделы трех типов: белкового (очень малочисленные), слизистого и смешанного (состоящего из слизистых клеток и небольших белковых полулуний). Внутридольковые и междольковые протоки выстланы двуслойным кубическим эпителием. Общий проток открывается рядом с протоком подчелюстной железы, иногда соединяясь с ним.
(стр. 84)
Иммунитет - способность организма поддерживать свою генетическую однородность, разрушая вещества и структуры с признаками генетически чужеродной информации - антигены.
Пре-Т-клетки мигрируют из костного мозга через кровь в центральный орган иммунной системы — тимус. Еще в период эмбрионального развития создается микроокружение, имеющее значение для дифференцировки Т-лимфоцитов. В формировании микроокружения особая роль отводится ретикулоэпителиальным клеткам этой железы, способным к продукции ряда биологически активных веществ. Мигрирующие в вилочковую железу пре-Т-клетки приобретают способность реагировать на стимулы микроокружения. Пре-Т-клетки в вилочковой железе пролиферируют, трансформируются в Т-лимфоциты, несущие характерные мембранные антигены. Т-лимфоциты генерируют и «поставляют» в кровообращение и в тимусзависимые зоны периферических лимфоидных органов 3 типа лимфоцитов: Тк, Тх и Тс. Мигрирующие из вилочковой железы Т-лимфоциты являются короткоживущими. Специфическое взаимодействие с антигеном в периферических лимфоидных органах служит началом процессов их пролиферации и дифференцировки в зрелые и долгоживущие клетки (Т-эффекторные и Т-клетки памяти), составляющие большую часть рециркулирующих Т-лимфоцитов.
Антигеннезависимая пролиферация и дифференцировка генетически запрограммированы на образование клеток, способных давать специфический тип иммунного ответа при встрече с конкретным антигеном благодаря появлению на плазмолемме лимфоцитов особых «рецепторов». Она совершается в центральных органах иммунитета (тимус, костный мозг) под влиянием специфических факторов, вырабатываемых клетками, формирующими микроокружение (ретикулярная строма или ретикулоэпителиальные клетки в тимусе).
Антигензависимая пролиферация и дифференцировка Т- и В-лимфоцитов происходят при встрече с антигенами в периферических лимфоидных органах, при этом образуются эффекторные клетки и клетки памяти (сохраняющие информацию о действовавшем антигене). Образующиеся Т-лимфоциты составляют пул долгоживущих, рециркулирующих лимфоцитов, а В-лимфоциты — короткоживущих клеток.
Лимфокины – биологически активные вещества, гликопротеины, синтезируемые и выделяемые лимфоцитами под действием антигена или неспецифического активатора (лектин и т.п.); обеспечивают кооперацию, координацию и регуляцию функций, обеспечивающих иммунный ответ клеток. К лимфокинам относятся интерфероны, интерлейкины, лимфотоксины, факторы некроза опухолей и др.
Естественные киллеры (NK), натуральные киллеры — большие гранулярные лимфоциты, обладающие цитотоксичностью против опухолевых клеток и клеток, зараженных вирусами. В настоящее время рассматривают как отдельный класс лимфоцитов. являются одним из важнейших компонентов клеточного врождённого иммунитета. NK формируются в результате дифференцировки лимфобластов (общих предшественников всех лимфоцитов). Они не имеют Т-клеточных рецепторов, или поверхностных иммуноглобулинов. Эти клетки были названными естественными киллерами, поскольку, по ранним представлениям, они не требовали активации для уничтожения клеток, не несущих маркеров главного комплекса гистосовместимости I типа.Основная функция NK - уничтожение клеток организма, не несущих на своей поверхности MHC1 и таким образом недоступных для действия основного компонента противовирусного иммунитета - Т-киллеров.
Препараты 2 - Подъязычная слюнная железа, 60 - Кожа с волосом. Эл.гр. 10 – агранулоцит
Билет 21.
(стр.82-слизистая, стр. 86-остальное)
Развитие мочевыделительной системы в эмбриогенезе идет в три фазы, при этом последовательно закладываются три парных органа: предпочка, первичная почка и постоянная почка.
Предпочка участвует в закладке мезонефрального протока, первичная участвует в формировании гонад.
Окончательная почка начинает формироваться на 4—5-й неделе эмбрионального развития из двух источников: выроста мезонефрального протока и нефрогенной ткан.
(из анатомии – расположение, макростроение итд)
Граница между корковым и мозговым веществом неровная: участки коркового вещества спускаются в мозговое, формируя почечные колонки (колонки Бертйни), а мозговое вещество проникает в корковое, образуя так называемые мозговые лучи (лучи Феррейна).
Структурно-функциональной единицей почки является нефрон, количество которых в почке достигает 1-2 миллионов. В состав нефрона входят: Корковое вещество содержит все почечные тельца и все извитые части проксимальных и дистальных канальцев. В мозговом веществе и мозговых лучах располагаются прямые канальцы - петля Генле и собирательные трубочки, которые в силу параллельности их хода придают этой зоне исчерченный вид.
Кортикальные нефроны имеют почечное тельце, лежащее в наружной части коркового вещества, и относительно короткую петлю Генле, расположенную в наружной части мозгового вещества.
У юкстамедуллярных нефронов почечное тельце расположено глубоко - на границе с мозговым веществом, а длинная петля Генле проникает в мозговое вещество вплоть до верхушек пирамид.
Кровообращение почки обеспечивает почечная артерия. Войдя в ворота органа, она распадается на междолевые артерии, которые идут радиально между пирамидами и по мозговому веществу до его границы с корковым. Здесь междолевые артерии разветвляются на дуговые артерии, проходящие вдоль этой границы в нижней части почечных колонок. Далее же кровообращение коркового и мозгового вещества обеспечивают разные системы сосудов.
В корковое вещество от дуговых отходят междольковые артерии, разделяющиеся затем на внутридольковые артерии. От последних (либо сразу от междольковых) начинаются приносящие артериолы. Причем от верхних внутридольковых артерий приносящие артериолы направляются к корковым нефронам. а от нижних - к юкста-медуллярным. В почечном тельце приносящая артериола распадается на капилляры, образующие сосудистый клубочек (первичная, «чудесная» сеть капилляров), из которых затем формируется выносящая артериола. В корковых нефронах выносящая артериола по диаметру приблизительно в два раза меньше приносящей. Это создает в капиллярной сети клубочка давление в 50-70 мм рт. ст. Данный факт является важным условием для первой фазы образования мочи -фильтрации жидкой части плазмы из сосудов клубочка в капсулу почечного тельца.
Выносящие артериолы снова распадаются на капилляры, которые оплетают в корковом веществе извитые канальцы нефронов. Из этой вторичной капиллярной сети осуществляется питание тканей органа, а кроме того, в ней идет реабсорбция полезных веществ из просвета извитых канальцев в кровь. Из капилляров перитубулярной сети кровь оттекает в верхних отделах почки в звездчатые вены, затем - в междольковые и дуговые. Затем она поступает в
междолевые и почечную вены, которые сопровождают на всем протяжении одноименные артерии.
Мозговое вещество снабжают кровью истинные прямые артерии, которые берут начато от дуговых артерий, и ложные прямые артерии, отходящие от выносящих артериол юкстамедуллярных нефронов.
почечное тельце образовано сосудистым клубочком и двустенной капсулой клубочка
КАПСУЛА состоит из внутреннего и наружного листков, наружный листок образован однослойным плоским эпителием, внутренний- сделан из клеток - подоцитов; внутренний листок окружает капилляры сосудистого клубочка и имеет общую с ними базальную мембрану; подоциты, кроме других функций, образуют базальную мембрану и участвуют в ее обновлении
СОСУДИСТЫЙ КЛУБОЧЕК состоит из капилляров, капилляры фенестрированного типа, базальная мембрана общая как для капилляра, так и для внутреннего листка капсулы; базальная мембрана толстая, трехслойная; капилляры сосудистого клубочка образуются за счет разветвления приносящей артериолы, при выходе из почечного тельца капилляры соединяются с образованием выносящей артериолы
ПОЛОСТЬ КАПСУЛЫ сообщается с просветом проксимального извитого канальца, в полость капсулы фильтруется первичная моча, которая из полости капсулы сразу попадает в проксимальный извитой каналец
ПОЧЕЧНЫЙ ФИЛЬТР - барьер между кровью и первичной мочой состоит из: 1) фенестрированного эндотелия капилляров сосудистого клубочка; 2) толстой трехслойной базальной мембраны и 3) подоцитов - клеток внутреннего листка капсулы (см.рисунок ниже)
МЕЗАНГИЙ - область, находящаяся между капиллярами, где они не покрыты подоцитами; мезангий образован рыхлой соединительной тканью, содержащей несколько видоизмененные фибробласты, называемые мезангиальными клетками, они участвуют в обновлении базальной мембраны капилляров и подоцитов, могут образовывать ее новые компоненты и фагоцитировать старые
ФУНКЦИЯ ПОЧЕЧНОГО ТЕЛЬЦА - образование (фильтрация) первичной мочи
Дата: 2019-12-10, просмотров: 283.