Скорость проведения по миелинизированным и немиелинизированным волокнам.
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Основной функцией аксонов является проведение импульсов, возникающих в нейроне. Аксоны могут быть покрыты миелиновой оболочкой (миелиновые волокна) или лишены ее (безмиелиновые волокна). Миелиновые волокна чаще встречаются в двигательных нервах, безмиелиновые преобладают в автономной (вегетативной) нервной системе.

Отдельное миелиновое нервное волокно состоит из осевого цилиндра, покрытого миелиновой оболочкой, образованной шванновскими клетками. Осевой цилиндр имеет мембрану и аксоплазму. Миелиновая оболочка является продуктом деятельности шванновской клетки и состоит на 80% из липидов, обладающих высоким омическим сопротивлением, и на 20% из белка.

Миелиновая оболочка не покрывает сплошным покровом осевой цилиндр, а прерывается, оставляя открытые участки осевого цилиндра, называемые узловыми перехватами (перехваты Ранвье).

Безмиелиновые нервные волокна покрыты только шванновской оболочкой.

В безмиелиновых волокнах возбуждение постепенно охватывает соседние участки мембраны осевого цилиндра и так распространяется до конца аксона. Скорость распространения возбуждения по волокну определяется его диаметром.

В миелиновых волокнах возбуждение охватывает только участки узловых перехватов, т. е. минует зоны, покрытые миелином. Такое проведение возбуждения по волокну называется сальтаторным (скачкообразным). В узловых перехватах количество натриевых каналов достигает 12 000 на 1 мкм , что значительно больше, чем в любом другом участке волокна. В результате узловые перехваты являются наиболее возбудимыми и обеспечивают большую скорость проведения возбуждения. Время проведения возбуждения по миелиновому волокну обратно пропорционально длине между перехватами.

В момент возбуждения энергия нервного волокна тратится на работу натрий-калиевого насоса. Особенно большие траты энергии происходят в перехватах Ранвье вследствие большой плотности здесь натрий-калиевых каналов.

Наибольшей скоростью проведения (до 120 м/с) обладают волокна группы Аα, которую составляют волокна диаметром 12—22 мкм.

Дополнение:

Нервный ствол образован большим числом волокон, однако возбуждение, идущее по каждому из них, не передается на соседние. Эта особенность проведения возбуждения по нерву носит название закона изолированного проведения возбуждения по отдельному нервному волокну. Возможность такого проведения имеет большое физиологическое значение, так как обеспечивает, например, изолированность сокращения каждой нейромоторной единицы.

Способность нервного волокна к изолированному проведению возбуждения обусловлена наличием оболочек, а также тем, что сопротивление жидкости, заполняющей межволоконные простран­ства, значительно ниже, чем сопротивления мембраны волокна. Поэтому ток, выйдя из возбужденного волокна, шунтируется в жидкости и оказывается слабым для возбуждения соседних волокон. Необходимым условием проведения возбуждения в нерве является не просто его анатомическая непрерывность, но и физиологическая целостность.

Локальные ионные токи и ПД

Анализ ионной природы потенциала действия позволил установить, что фронт нарастания потенциала действия и перезарядка мембраны (овершут) обусловлены движением ионов натрия внутрь клетки.

Натриевые каналы оказались электроуправляемыми. Деполяризующий толчок тока приводит к активации натри­евых каналов и увеличению натриевого тока. Это обеспечивает ло­кальный ответ. Смещение мембранного потенциала до критического уровня приводит к стремительной деполяризации клеточной мембра­ны и обеспечивает фронт нарастания потенциала действия. Если уда­лить ион Na+ из внешней среды, то потенциал действия не возникает. Аналогичный эффект удавалось получить при добавлении в перфузионный раствор ТТХ (тетродотоксин) — специфического блокатора на­триевых каналов. При использовании метода «voltage-clamp» было показано, что в ответ на действие деполяризующего тока через мембрану протекает кратковременный (1—2 мс) входящий ток, который сменяется через некоторое время выходящим током. При замене ионов натрия на другие ионы и вещества, например холин, удалось показать, что входящий ток обеспечивается натрие­вым током, т. е. в ответ на деполяризующий стимул происходит повы­шение натриевой проводимости (gNa+). Таким образом, развитие фа­зы деполяризации потенциала действия обусловлено повышением на­триевой проводимости.

Критический потенциал определяет уровень максимальной акти­вации натриевых каналов. Если смещение мембранного потенциала достигает значения критического уровня потенциала, то процесс по­ступления ионов Na+ в клетку лавинообразно нарастает. Система на­чинает работать по принципу положительной обратной связи, т. е. возникает регенеративная (самоусиливающаяся) деполяризация.

На пике потенциала действия проводимость мембраны для ионов натрия (gNa+) начинает быстро снижаться. Этот процесс называется инактивацией. Скорость и степень натриевой инактивации зависят от величины мембранного потенциала, т. е. они потенциалзависимы. При постепенном уменьшении мембранного потенциала до —50 мВ (например, при дефиците кислорода, действии некоторых лекарст­венных веществ) система натриевых каналов полностью инактивируется и клетка становится невозбудимой.

Потенциалзависнмость активации и инактивации в большой сте­пени обусловлена концентрацией ионов кальция. При повышении концентрации кальция значение порогового потенциала увеличива­ется, при понижении — уменьшается и приближается к потенциалу покоя. При этом в первом случае возбудимость уменьшается, во втором — увеличивается.

После достижения пика потенциала действия происходит реполяризациая, т. е. мембранный потенциал возвращается к контроль­ному значению в покое.

Исследование возбудимости клетки во время локального ответа или во время отрицательного следового потенциала показало, что генерация потенциала действия возможна при действии стимула ниже порогового значения. Это состояние супернормальности, или экзальтации.

Продолжительность периода абсолютной рефрактерности ограни­чивает максимальную частоту генерации потенциалов действия дан­ным типом клеток. Например, при продолжительности периода аб­солютной рефрактерности 4 мс максимальная частота равна 250 Гц.

 

 

Дата: 2019-12-10, просмотров: 363.