Надежность ВС со сложной структурой резервирования
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Встречаются структуры, когда резервирование имеет место, но его нельзя представить по последовательной или параллельной схеме, наиболее часто встречается скользящее резервирование, когда число резервов подсистем и число однотипных подсистем больше чем требуется для выполнения поставленной задачи,, причем каждая резервная подсистема может замещать отказавшую.

Пусть в системе имеется n основных подсистем и m резервных. Тогда вероятность безотказной работы системы:

р – вероятность безотказной работы подсистемы

С – число сочетаний

Рассмотрим два приближенных метода расчета таких систем: метод минимальных путей и метод минимальных сечений. Эти методы являются приближенными. Позволяют оценить действительное значение вероятности безотказной работы снизу и сверху.

Для формального описания введем логическую функцию F(x). Где логический вектор x = {x1,…xn} характеризует работоспособность элементов системы. Если xi = 1, то i-ый элемент (подсистема) – работоспособен, если xi = 0, то – неработоспособен. F(x) = 1, тогда система работоспособна. Определим в принятых обозначениях понятия минимальный путь и минимальное сечение.

Если F(x) = 1 и F(y) = 0 при любых y<x, то x = a - это и есть минимальный путь. Т.е. j-ый минимальный путь состоит из локально-минимальной совокупности Mj подсистем, необходимой для обеспечения безотказной работы системы, независимо от состояния остальных подсистем. В структуре системы имеется несколько минимальных путей. Характерным признаком минимального пути является то, что отказ хотя бы одной подсистемы пути влечет за собой отказ системы.

Для графа (стр. 13) укажем следующие минимальные пути: 12, 147, 1367, 567, 532, 5347, 5642.

Если F(x) = 0 и F(y) = 1 при любых y>x, то x = b - это минимальное сечение. Т.к. k-ое минимальное сечение состоит из минимальной совокупности подсистем Nk, одновременный отказ которых влечет за собой отказ системы, независимо от состояния отдельных подсистем. Характерной особенностью минимального сечения является то, что восстановление хотя бы одной подсистемы в минимальном сечении (при условии, что остальные подсистемы работают) влечет за собой восстановление системы. Минимальное сечение это: 15, 136, 1347, 5342, 246, 27.

РС оценивается по двойному неравенству рН  рС  рВ.

рН выражается как вероятность безотказной работы вспомогательной системы, составленной из последовательно включенных групп подсистем. Каждая группа состоит из параллельно включенных подсистем соответствующего минимального сечения.

рВ выражается как вероятность безотказной работы вспомогательной системы, составленной из параллельно включенных групп подсистем, соответствующим всем минимальным путям системы. Каждая группа состоит из последовательно включенных подсистем соответствующего минимального пути.

Примеры.

Рассмотрим ВС состоящую из устройств памяти y1 и y2, процессоров П7 и П8 и устройств сопряжения С3 – С5. Рисунок в тетради.

 

Необходимо оценить вероятность безотказной работы системы. Допустим, что условием работоспособности системы является наличие хотя бы одного работающего устройства памяти, хотя бы одного работающего процессора и связи м/ ними через устройство сопряжения. Отказы подсистем являются отказами типа отключения, например отказ y1 не препятствует работе остальной части системы.

Изобразим систему в виде:

графа системы

вспомогательного графа:

Определим минимальные сечения: 12, 78, 145, 236, 348, 567, 1468, 2467, 3456.

Минимальные пути: 137, 168, 247, 258, 13458, 16547, 24368, 25637,

Пусть вероятность отказа 2-ух устройств в памяти qУ соответственно 4-ех устройств сопряжения qС равны м/ собой, тогда

рН = (1-qУ2). (1-qП2). (1-qС2. qП)2. (1-qС2. qУ)2. (1- qУ. qС2. qП)2. (1-qС4)

обозначим вероятности безотказной работы устройств памяти через рУ = 1-qУ, устройств сопряжения рС = 1-qС, процессоров рП = 1-qП, тогда

рВ = 1 - (1- рУ. рС3. рП)4. (1- рУ. рС. рП)4.

Вспомогательный граф системы для определения рВ.

Дата: 2019-12-10, просмотров: 236.