Вариант № 5
Код 5, 15, 25, 35, 45, 55, 65, 75
Задание 5
Найти область определения функции
Решение: в числителе ничего особенного нет, а вот знаменатель должен быть ненулевым. Давайте приравняем его к нулю и попытаемся найти «плохие» точки:
Полученное уравнение имеет два корня: . Данные значения не входят в область определения функции. Действительно, подставьте или в функцию и вы увидите, что знаменатель обращается в ноль.
Ответ: область определения:
Задание 15
Найти предел функции
= = = = = =3+3=6
Задание 25
Дано: прямоугольный параллелепипед ABCDA1B1C1D1; DA=1; DC=2; DD1=3. Найти: угол между прямыми CB1 и D1B.
Рис. 1.
Решение
Введем систему координат Dxyz (см. рис. 1) и найдем направляющие векторы D1B и СB1. Для этого сначала найдем координаты точек D1, B, C и B1, так как через них проходят нужные нам прямые. D1(0;0;3), B(1;2;0), C(0;2;0), B1(1;2;3). Зная координаты точек, мы можем найти координаты направляющих векторов, вычитая из координат конца координаты начала вектора: , . Найдем косинус угла между прямыми CB1 и D1B: .
Значит, .
Задание 35
Найти производную функции
Решение
Смотрим в таблицу производных. Производная косинуса там есть, но у нас .
Решаем:
Самое время использовать правило, выносим постоянный множитель за знак производной:
А теперь превращаем наш косинус по таблице:
Ну и результат желательно немного «причесать» – ставим минус на первое место, заодно избавляясь от скобок:
Задание 45
Исследовать функцию и построить график функции
Решение:
1) Функция определена по всюду кроме точки в которой знаменатель превращается в ноль ( ). Область определения состоит из двух интервалов
2) При подстановке значения получим
Такую же точку получим если приравняем функцию к нулю. Точка - единственная точка пересечения с осями координат.
3) Проверяем функцию на четность
Итак функция ни четная, ни нечетная, непериодическая.
4) В данном случае имеем одну точку разрыва . Вычислим границы слева и справа от этой точки
Итак – точка разрыва второго рода.
5) Для отыскания интервалов монотонности вычисляем первую производную функции
Приравнивая ее к нулю получим точки подозрительные на экстремум . Они разбивают область определения на следующие интервалы монотонности
Исследуем поведение производной слева и справа от найденных точек разбиения
Графически интервалы монотонности будут иметь вид
Исследуемая функция возрастает на интервалах и убывает .
Точка – точка локального максимума, – локального минимума. Найдем значение функции
6) Для отыскания интервалов выпуклости найдем вторую производную
Таких интервалов нет, поскольку вторая производная не принимает нулевых значений в области определения.
7) Точка – вертикальная асимптота функции. Уравнение наклонной асимптоты имеет вид
где - границы которые вычисляются по правилу
Находим нужные границы
Конечный вид прямой следующий
8) На основе проведенного анализа выполняем построение графика функции. Для этого сначала строим вертикальные и наклонные асимптоты, затем находим значение функции в нескольких точках и по них проводим построение.
--------------------------------------
Задание 55
Вычислить определённый интеграл
Используя свойства определённого интеграла, а при нахождении первообразных – табличные интегралы получим
Задание 65
Найти площадь фигуры, ограниченной линиями , , и находящейся в 1-й четверти.
Решение
Чтобы воспользоваться формулой (1), представим площадь искомой фигуры в виде суммы площадей треугольника OAB и криволинейной трапеции ABC. При вычислении площади треугольника OAB пределами интегрирования служат абсциссы точек O и A, а для фигуры ABC - абсциссы точек A и C (A является точкой пересечения прямой OA и параболы, а C - точкой пересечения параболы с осью Ox). Решая совместно (как систему) уравнения прямой и параболы, получим (абсциссу точки A) и (абсциссу другой точки пересечения прямой и параболы, которая для решения не нужна). Аналогично получим , (абсциссы точек C и D). Таким образом имеем всё для нахождения площади фигуры. Находим:
Задание 75
Конференция длится три дня. В первый и второй день выступают по 15 докладчиков, в третий день – 20. Какова вероятность того, что доклад профессора Морозова выпадет на третий день, если порядок докладов определяется жеребьевкой?
Решение
Что здесь является элементарным исходом? – Присвоение докладу профессора какого-то одного из всех возможных порядковых номеров для выступления. В жеребьевке участвует 15+15+20=50 человек. Таким образом, доклад профессора Морозова может получить один из 50 номеров. Значит, и элементарных исходов всего 50.
А какие исходы благоприятные? – Те, при которых окажется, что профессор будет выступать в третий день. То есть, последние 20 номеров.
По формуле вероятность P(A)= 20/50=2/5=4/10=0,4
Ответ: 0,4
Дата: 2019-11-01, просмотров: 225.