Возможны разные подходы к определению понятия интеграла от комплексной функции. Так, например, - функции двух переменных, тогда можно вычислять кратные интегралы от них по некоторой плоской области, и объединять результаты в комплексное число вида . Однако в качестве основного всё же исторически был принят метод интегрирования по кривой, именно при таком подходе возможно введение понятия первообразной , а также получают применение многие факты из теории векторного поля. Итак, определение интеграла и метод его вычисления:
Определение. Пусть в области задана некоторая функция (не обязательно аналитическая), и в области расположена кусочно-гладкая кривая (не обязательно замкнутая). Введём разбиение кривой на n частей с помощью (n-1) внутренних точек. Таким образом, получилась последовательность точек , расположенных по порядку на кривой, где - начальная и конечная точки. Обозначим . Выберем на каждом участке дуги какую-то точку и составим интегральную сумму: . Предел интегральных сумм при измельчении разбиения, т.е. при , называется интегралом от функции по кривой и обозначается .
Метод вычисления. При вычислении необходимо разбить на действительную и мнимую части как функцию, так и дифференциал, затем раскрыть скобки и получить 4 слагаемых. Но их можно объединить по два, в двух из них нет мнимой единицы, а в двух она есть:
= .
Таким образом, при вычислении всё сводится к двум криволинейным интегралам 2-го рода от векторных полей и , а мнимая единица умножается на второй из них, при этом в самих вычислениях она фактически не участвует.
Некоторые свойства.
1. Линейность = .
2. Если кривая АС разбита на две части некоторой точкой В, то:
3. .
4. Если то , где - длина кривой АВ.
Пример. Вычислить интеграл :
А) по прямолинейному отрезку от 0 до .
Б) по параболе от 0 до .
Решение.
А) = =
, далее вычисляем 2 криволинейных интеграла по отрезку, на котором , заменяем , .
При этом . = = .
Б) Исходное раскрытие скобок происходит так же, как и в прошлом случае: но теперь линия это не отрезок, заданный явным уравнением , а парабола, заданная явным уравнением . Поэтому заменяем , .
= =
= .
Ответ. по отрезку: 1, по параболе: .
Как видим, в зависимости от формы кривой могут получиться разные ответы, но это здесь потому, что функция не аналитическая, она содержит , а мы доказывали теорему 4 в конце прошлого § о том, что аналитичность равносильна отсутствию в составе функции, то есть тому, что .
Пример. Вычислить , где - окружность радиуса вокруг точки 0.
Решение. Представим функцию в виде . Движение по окружности можно задать формулами:
В этом случае . Тогда
= = =
домножим на сопряжённое, =
= =
= =
= .
Пример. Вычислить , где - окружность радиуса вокруг точки .
Решение. Изучим при этом ещё более короткий способ с более компактной записью. Представим = = . Тогда .
= = = .
ЛЕКЦИЯ 5. 30.09.2019
Теорема 1. Если замкнутый контур, внутри которого во всех точках является аналитической, то .
(ДОК 14). Доказательство. = =
в двух этих интегралах - циркуляция двух векторных полей и , они потенциальны по теореме 2 прошлого §, а тогда циркуляция равна 0, то есть получаем .
Теорема 2. Если является аналитической во всех точках некоторой области , граница которой односвязна, то интеграл от функции не зависит от пути, то есть имеет одно и то же значение для любой кривой , соединяющей пару точек .
(ДОК 15). Доказательство. Аналогично прошлой теореме,
= .
Криволинейные интегралы 2 рода от векторных полей и не зависят от пути, что доказано ранее в главе «теория поля».
Так как для аналитической функции интеграл не зависит от пути, то для аналитической функции оказывается возможным ввести понятие первообразной. Введём в рассмотрение такую функцию: которая каждой точке ставит в соответствие интеграл до неё от некоторой фиксированной точки . Вводится по аналогии с вычислением потенциала поля, только в данном случае, вычисляются потенциалы двух полей и . Докажем, что построенная таким образом функция является первообразной.
Теорема 3. Функция является первообразной от функции .
(ДОК 16). Доказательство.
Докажем, что производная от равна .
По определению производной, .
Распишем разность в числителе более подробно.
= .
потому что по свойству 2, в числителе сокращается интеграл по той части, которая от до , и остаётся только от до .
Распишем более подробно действительную и мнимую часть в интеграле.
=
Так как векторные поля в этих криволинейных интегралах потенциальны, то можно пройти по любому пути от точки до , в частности, по ломаной, где один участок горизонтальный, другой вертикальный (как это делали когда-то при поиске потенциала).
=
Получилось 4 интеграла, каждый от действительной функции. Для непрерывной функции действительного переменного верна теорема о среднем, т.е. свойство: , значит, для этих 4 интегралов существуют такие точки , что выполняется:
, ,
,
причём при точка , ведь она находится на отрезке, который стягивается в одну точку, в свою левую границу, аналогично при .
Тогда =
, в пределе это стремится к
, что равно
= . Вспомним, что это изначально был числитель в дроби , и тогда = .
Теорема 4. Для аналитической на кривой функции верна формула Ньютона-Лейбница: .
(ДОК 17). Доказательство. По построению первообразной,
и .
Но тогда = а тогда по 3-му свойству
это , что равно интегралу по кривой, проходящей от до (через точку ).
Тогда = = т.к. по свойству 2, их можно объединить. Итак, = .
Пример. Вычислить от 0 до двумя способами:
А) без формулы Б) по формуле Ньютона-Лейбница.
Решение.
А) = =
Пусть точки 0 и соединены по прямой (вспомним, что интеграл не зависит от пути, поэтому можем соединить их как удобнее для вычислений). Тогда , , и
= = = .
Б) По формуле: = = = = .
Интегральная формула Коши
Заметим, что в последнем примере в конце прошлой лекции сократилось и ответ вообще не зависел от - радиуса окружности. То есть получается, при уменьшении или увеличении окружности ничего не изменится, если та же самая точка разрыва остаётся внутри, а замкнутый контур стягивается к ней, оставляя снаружи область аналитичности. Этот факт докажем в общем случае.
Теорема 1. (Интегральная теорема Коши).
Пусть некоторый замкнутый контур, - n замкнутых непересекающихся контуров, лежащих внутри . Функция является аналитической на всех этих контурах, а также внутри , но вне . Тогда .
Доказательство (ДОК 18).
Для того, чтобы лучше понять идею доказательства, рассмотрим сначала ситуацию, когда внутри расположен один контур , то есть оласть аналитичности - кольцо. Можно взять какую-либо пару точек на и соответственно (чтобы точкибыли максимально близко напротив друг друга) и соединить их отрезком. Тогда для комбинированого контура, состоящего из 4 частей: , , , внутренняя область, похожая на кольцо с разрезом, это область аналитичности. Мы один раз обходим этот контур, двигаясь по внешнему против часовой стрелки, поэтому и обозначено , затем переходя на внутренний контур по , затем двигаясь по внутреннему в противоположном направлении ( ), и возвращаясь по снова на внешний контур. Чертёж:
Но если комбинированный контур окружает область аналитичности, то интеграл по нему равен 0.
.
При этом интегралы по и и так взаимно уничтожаются, поэтому . Но если сменить направление движение по внутреннему контуру , то интеграл по нему сменил бы знак, тогда: .
Таким образом, интегралы по и одинаковы, то есть можно без изменения результата уменьшить область, стянув её к точке разрыва, оставив снаружи какую-то часть области аналитичности.
Если внутри несколько контуров, внутри которых нарушена аналитичности или даже существование функции, то применяется похожая схема рассуждений, только надо поочерёдно соединить отрезком с , затем с и так далее, до номера n.
Теорема 2. (Интегральная формула Коши).
Пусть является аналитической на контуре и внутри него, точка лежит внутри . Тогда .
Доказательство (ДОК 19).
В рассмотренном примере в конце прошлой лекции мы вычислили , то есть верно . Но мы можем домножить это равенство на любую комплексную константу, и тогда: . Впрочем, тогда это же верно и для константы : получаем . Мы получили выражение, очень похожее на то, которое надо доказать, но ещё не то: ведь здесь в числителе константа, а не функция. Вот если мы теперь ещё и докажем, что , или то же самое, что , то требуемое утверждение будет верно.
Рассмотрим функцию . Это функция, которая участвует в определении предела, ведь .
Таким образом, , то есть имеет конечный предел в точке , а это значит, что она ограничена в окрестности этой точки, . По теореме 1 (интегральная теорема Коши), интеграл по можно заменить на интеграл по любой малой окружности радиуса , лежащей внутри , результат при этом не изменится. Тогда = , где - максимальное значение модуля функции, - длина кривой, по которой происходит интегрирование. Но ведь по теореме 1 это должно быть верно для какого угодно малого . То есть меньше или равен любой бесконечно-малой величины. Тогда этот интеграл равен 0. То есть = = . Значит, , а тогда:
, т.е. доказано в итоге.
Интегральная формула Коши позволяет быстро вычислять интегралы по контуру вокруг точки разрыва, фактически не проводя подробное интегрирование. Достаточно убрать из знаменателя ту скобку , которая соответствует этой точке разрыва, подставить в остальную функцию и домножить на .
Пример. Вычислить .
Решение. Внутри окружности радиуса 1,5 всего одна из двух точек разрыва функции, вторая снаружи. Обозначим в качестве функцию без , как будто на делим чуть раньше, а на позже.
= , где это то, что именно обозначается в интегральной формуле Коши.
Тогда = = = . \
Ответ. .
ЛЕКЦИЯ 6. 07.10.2019
Теорема 3. (Обобщённая интегральная формула Коши).
Пусть является аналитической на контуре и внутри него, точка лежит внутри . Тогда .
Доказательство (ДОК 20).
Продифференцируем по параметру правую и левую часть равенства в исходной интегральной формуле Коши.
.
= = = = .
Таким образом, .
Следующая производная от равна
= . Аналогично следующая (тертья от исходной функции) равна , далее по индукции для n-й производной получим = . Тогда .
Рассмотрим примеры, похожие на предыдущий, но в которых будет 2 или 3 степень скобки . По обобщённой интегральной формуле Коши, если скобка во 2 степени, надо не просто убрать её из знаменателя, а после этого ещё и один раз продифференцировать оставшуюся функцию, и лишь затем подставлять . А если 3 степень, то 2 раза продифференцировать, но с 3-й степени начинает ещё и изменяться коэффициент из-за того, что он уже не равен 1, а будет .
Пример. Вычислить .
Решение. = = = = = .
Ответ. .
Пример. Вычислить .
Решение. = = =
= = = .
Ответ. .
Лемма Доказать, что = 0 для любого целого .
Доказательство (ДОК 21) Здесь по обобщённой интегральной формуле Коши при любом n получается, что . Затем любая производная от константы есть 0. Поэтому результат всегда 0.
= 0 для .
Особые точки и вычеты
Нули аналитической функции.
Определение. Точка называется нулём функции , если .
Мы сначала изучим нули функции, для того, чтобы затем изучить более подробно типы точек разрыва. Если является нулём для то в этой же точке предел равен .
Вспомним, что в 1 семестре было ещё название «бесконечно-малая» и «бесконечно-большая» функция в точке. Бесконечно-малые могли быть разных порядков. Есть и здесь аналогичное более подробное определение, различающее порядки бесконечно малых:
Определение. Точка называется нулём порядка m функции , если и функция представима в виде , где .
Определение. Точка называется правильной точкой функции , если является аналитической в , и особой точкой, если она не является аналитической в .
Определение. Точка называется изолированной особой точкой, если в некоторой её окрестности нет других особых точек.
Существует такая классификация особых точек в зависимости от предела .
Название | Устранимая особая точка | Полюс | Существенно-особая точка |
При каком условии | не существует | ||
Пример ( ) | = | = | = |
Лемма. Точка является нулём функции она является полюсом функции .
Док-во очевидно: является нулём функции функция представима в виде , причём
. Это эквивалентно тому, что =
, где , а предел знаменателя равен 0. Это означает, что .
В связи с этим, естественным образом возникает определение полюса порядка : точка называется полюсом порядка m для функции , если для функции она является нулём порядка m.
Замечание. Нуль и полюс функции соответствуют понятиям «бесконечно малая» и «бесконечно большая» функция в точке (из 1 семестра).
Пример. Указать тип всех особых точек для функции:
.
Решение. В знаментателе нули 1-го, 2-го и 3-го порядка, а именно, точки 2,3 и 4. Тогда для : полюс 1-го порядка,
полюс 2-го порядка, полюс 3-го порядка.
Теорема. Если , причём точка является нулём порядка m для функции , и нулём порядка n для функции , то при точка устранимая или правильная точка, а при полюс порядка для функции .
Доказательство (ДОК 22). Если - нуль порядка m и n соответственно для числителя и знаменателя, то = = где для каждой из двух функций. Тогда можно обозначить и в итоге , это и означает, что полюс порядка .
Пример. Определить тип особой точки для функции .
Решение. Представим функцию в числителе в виде разложения в ряд Тейлора.
= = в числителе нуль 1 порядка, а в знаменателе 4-го. Тогда точка полюс 3 порядка.
= = . В числителе после сокращения осталась функция, имеющая ненулевой предел.
Дата: 2019-11-01, просмотров: 186.