Учебное пособие для специальности
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Приходовский М.А.

Математика

Курс лекций

Семестр 3

Учебное пособие для специальности

Прикладная информатика в экономике»

Томск

ТУСУР

2019


 

 

       Электронное учебное пособие составлено по материалам лекций на ФСУ в группах 448-1,2 осенью 2019 года.

 

(ДОК №) - доказательства формул или теорем, которые попадают в теооретические билеты.
Оглавление 

Глава 1. Элементы теории поля.......................................... § 1. Криволинейные интегралы 2 рода......................................... § 2. Потенциальные поля .............................................................. Глава 2. Теория функций комплексного переменного ........... § 1. Действия с комплексными числами......................................... § 2. Функции комплексного переменного...................................... § 3. Дифференцирование комплексных функций......................... § 4. Интегрирование комплексных функций................................. § 5. Интегральная формула Коши .................................................. § 6. Особые точки и вычеты.......................................................... Глава 3. Теория рядов ................................................................. Глава 4. Особые точки и вычеты .............................................     5 5 10 18 18 20 25 34 42 49  

 

 


Оглавление по номерам лекций

Лекция 1.......................................................................................... Лекция 2.......................................................................................... Лекция 3.......................................................................................... Лекция 4.......................................................................................... Лекция 5.......................................................................................... Лекция 6.......................................................................................... Лекция 7.......................................................................................... Лекция 8.......................................................................................... Лекция 9.......................................................................................... Лекция 10......................................................................................... Лекция 11......................................................................................... Лекция 12......................................................................................... Лекция 13......................................................................................... Лекция 14......................................................................................... Лекция 15......................................................................................... Лекция 16.........................................................................................   5 14 22 31 38 47 57  

 






ЛЕКЦИЯ 1. 02.09.2019

Глава 1. Элементы теории поля.

Теорема 1. Формула Грина.

Пусть в области , граница которого - замкнутый контур , являющийся односвязным множеством, задано плоское векторное поле .

Тогда  верна такая формула: .

То есть, работа силы по границе области равна двойному интегралу от величины  по этой плоской области.

Доказательство (ДОК 1). Спроецируем область на ось Ох, обозначим границы проекции: точки . Сама граница области тогда условно подразделяется на две линии, снизу , а сверху . Чтобы движение по замкнутому контуру происходило против часовой стрелки, надо по  двигаться слева направо, а по  справа налево.

 

Рассмотрим подробнее интеграл от функции  по границе области. В соответствии со всем сказанным, он может быть записан так: . Но во втором интеграле можно изменить  на , сменив знак.

 и их можно объединить

 =

разность, которая внутри интеграла, является результатом применения формулы Ньютона-Лейбница по переменной

запишем это в виде: .

Но если формула Ньютона-Лейбница применяется к , значит,  это первообразная по , а она очевидно, является первообразной от своей производной . То есть: 

 =  а этой как раз и есть двойной интеграл по области D.

 = .

Аналогично можно спроецировать область D на ось Оу, допустим проекция займёт некоторый отрезок . Левую и правую линии, составляющие замкнутый контур, обозначим  и . Правая здесь будет  (она дальше от оси Оу).

Тогда  =  =  =

 =  =

Сложим два полученных равенства и получается двойной интеграл

.

 

Пример. Решим тот же самый пример, что рассматривали недавно, работа поля   при движении точки по единичной окружности, но сделаем это теперь по формуле Грина.

  . Тогда  =  =  где D - круг радиуса 1. Тогда интеграл от 1 это его площадь.  =  = .

 

Потенциальные поля

 

Скалярное поле, или скалярная функция: .

Векторная функция, которая отображает  называется векторным полем.

Заметим, что градиент скалярной функции - это векторная функция:  

, ,

То есть, по скалярному полю всегда можно построить некоторое векторное.

Пример: . Тогда .

 

       Обратная задача: если даны некоторые 3 скалярные функции, т.е. векторное поле, всегда ли они являются частными производными какой-то единой скалярной функции? Оказывается, нет.

Определение. Если существует такая скалярная функция , что выполняется , , , (то есть их общая первообразная), то векторное поле называется потенциальным, а функция  называется потенциалом  поля .

 

Кстати, если  - потенциал, то  - тоже потенциал, ведь , , .

Потенциал определяется с точностью до константы (точно так же как и первообразная). Именно поэтому в физике важна именно разность потенциалов, а не сам потенциал.

 

Примеры.

Пример не потенциального поля.

. Первообразная от 1 компоненты по  это , однако первообразная по от второй компоненты совсем другая:

, они не совпадают.

Пример потенциального поля.

. Его потенциал: .

 

Далее нам надо научиться выяснять 2 вопроса:

1) выяснять, является ли поле потенциальным.

2) вычислять потенциал, если оно потенциально.

Теорема 2. Криволинейный интеграл 2 рода не зависит от пути  циркуляция по замкнутому контуру равна 0.

Доказательство (ДОК 2).

Необходимость. Пусть интеграл зависит только от начальной и конечной точки, и не зависит от пути, соединяющего точки А,В. Возьмём какой-нибудь замкнутый контур, разобьём его какими-нибудь случайно взятыми точками. Докажем, что циркуляция равна 0.

. Но так как объединение 2 частей в замкнутый контур это , то получается: .

Достаточность.

Пусть для любого замкнутого контура . Если даны какие-то точки А,В, и какие-то две различные линии, соединяющие их, то эти две линии можно объединить в единый замкнутый контур.

 

,

что и требовалось доказать.

 

Теорема 3. Поле F потенциально криволинейный интеграл 2 рода от F не зависит от пути, причём тогда потенциал в любой точке  вычисляется в виде  где A0  - некоторая начальная точка, как правило (0,0,0).

Доказательство (ДОК 3).

Необходимость. Если поле потенциально то , ,

а тогда в интеграле  получится  а по формуле полного дифференциала это  но ведь первообразная от производной - это сама функция U, тогда работа поля  в итоге равна  =  то есть зависит только от начальной и конечной точки.

Достаточность.

Если криволинейный интеграл для поля (P,Q,R) не зависит от пути, возьмём начальную точку, например начало координат (0,0,0). Введём некоторую скалярную функцию U(x,y,z) равную работе поля от (0,0,0) до точки А(x,y,z). То есть .

А теперь мы докажем, что именно эта функция является потенциалом.

Составим путь из дуги от 0 до А и дополнительного маленького горизонтального отрезка вдоль оси Ох. Интеграл от 0 до А равен U(А). Интеграл от 0 до А1 равен U(А1).

Координаты точек: А (x,y,z) и А1 (x+∆x,y,z) .

Тогда  =   но в интеграле по отрезку АА1  меняется только x,  при этом y, z константы, то есть dy = 0, dz = 0. 

 для некоторой промежуточной точки с, где достигается среднее значение.

Тогда ,  следовательно, = .

Но точка с тоже стремится к х при ∆x →0.

То есть . Итак, .

Аналогично, рассматривая точку А1 с координатами А1 (x,y+∆y,z) получили бы ,  а если то А1 (x,y,z+∆z) то . Итак, поле потенциально и U(x,y,z), равная работе силы по перемещению от начальной точки до (x,y,z), является потенциалом. 

 

Следствие. Поле F потенциально  циркуляция по замкнутому контуру равна 0.

 

       Доказанный критерий позволяет вычислить потенциал, если известно, что поле потенциально, однако практически ничем не поможет выяснить изначально вопрос о том, потенциально ли поле. Ведь кривых, соединяющих две точки А,В бесконечно много, и невозможно вычислить интегралы по всем этим кривым. Поэтому для проверки потенциальности необходим другой критерий.

ЛЕКЦИЯ 2. 09.09.2019

Теорема 4. 1) Если поле  потенциально то симметрична производная матрица .

2) Если граница области D, в которой задано векторное поле, является односвязным множеством, и симметрична производная матрица , то поле потенциально.

Доказательство (ДОК 4).

1) Необходимость. Пусть поле потенциально. Тогда  являются производными от какой-то общей функции , т.е. , .  тогда , . Но смешанные частные производные 2-го порядка совпадают, значит, = .

а следовательно, = .

2) Достаточность. Здесь мы будем использовать формулу Грина, которую доказали ранее, а там фактически неявно это и предполагали при записи двойного интеграла, когда для  рассматривался отрезок , то есть такая ситуация, как для кольца, не рассматривается, а только множества без внутренних пустот.

Если производная матрица симметрична, то  (в других обозначениях = ). Тогда , и двойной интеграл по любой плоской области равен 0: .

Но ведь тогда для любого замкнутого контура получается, что по формуле Грина, если двойной интеграл по его внутренней области 0, то и циркуляция по границе тоже 0:

 = 0,

а если для любого контура циркуляция 0, то поле потенциально, что следует из теорем 1 и 2, доказанных ранее.

В 3-мерном случае требуется совпадение трёх пар производных, доказательство показано пока для 2-мерного случая, чтобы использовать формулу Грина.

 

Алгоритм нахождения потенциала.

1. Выяснить потенциальность поля, проверив симметричность производной матрицы (она сотоит из всех частных производных: от всех компонент векторного поля по всем переменным).

2. Найти потенциал, как скалярную функцию, равную криволинейному интегралу от фиксированной точки до произвольной.

Как правило, в качестве «начальной»  фиксированной точки рассматривают начало координат, если же в функциях присутствуют к примеру  или , то можно взять в качестве начальной точку (1,1) а не (0,0).

Путь от начальной точки до может быть по любой кривой, но практически лучше по ломаной, состоящей из отрезков, параллельных осям координат. Сначала от (0,0) к (x,0) а затем 2-е звено до точки (x,y).

Пример. Доказать, что поле  потенциально и найти потенциал.

Решение. Шаг 1. Сначала найдём производную матрицу, вычислив все частные производные по всем переменным:

 = . Мы видим, что она симметрична. Значит, поле потенциально.

Шаг 2. Найдём криволинейный интеграл от (0,0) до , соединив с помощью ломаной. Лучше всего даже обозначить конечную точку , чтобы не путать обозначение переменной, по которой ведётся интегрирование, и верхнего предела. Вычислив , затем мы учтём тот факт, что эта точка была произвольной, и сможем записать уже просто .

 разбивается на сумму двух интегралов, по каждому участку ломаной, причём на каждом из них обнуляется один из двух дифференциалов: на горизонтальном отрезке меняется только , а тогда , на вертикальном меняется , тогда .

 =  

в обоих интегралах формально присутствуют оба слагаемых, но одно из них обнуляется, поэтому выглядит далее так, как будто распределилось по одному слагаемому в каждый интеграл.

 в первом фиксировано , а на втором участке переменная  уже достигла  и далее не меняется, поэтому там .

Для данного конкретного примера получается

 =   =   = .

Итак, , тогда можно сказать, что .

Проверка. , .

 



Глава 2.

Доказательство (ДОК 6).

Обобщение любой функции на случай комплексного переменного можно проводить с помощью рядов. Поскольку существует любая степень мнимой единицы , например , , , и т.д. то этот подход возможен. Вспомним разложение экспоненты по формуле Тейлора.   

Тогда вычислим  =

 теперь соберём в отдельные слагаемые все части, где нет , и где есть .

 но ведь в 1 и 2 скобках стоят разложения  и . Итак, , что и требовалось доказать.

Теперь для любого числа  можно вычислить

 =  =  =  = .

Для сопряжённого числа можно вычислить аналогично:

 =  =  =  = .

(здесь воспользовались чётностью cos и нечётностью sin).

Получается, сопряжение под знаком экспоненты приводит 

Доказательство (ДОК 7).

Рассмотрим для действительного числа  и покажем, что данные функции, а именно  и , приведут именно к обычному синусу и косинусу действительного числа, т.е. они обобщают синус и косинус. Используя формулу Эйлера,

1)  =  =  =

2)  =  =  =

 

Неограниченность синуса и косинуса в комплексной плоскости.

Пример. .

Вычислим:  =  = .

 

Логарифм комплексного числа.

Обобщённый логарифм вводится с помощью формулы:  

.

Доказательство (ДОК 8).

 

,

это означает  так как синус и косинус не зависят от прибавления угла, кратного  . Это равенство уже очевидно, так как это и есть тригонометрическая форма комплексного числа.  

Если вычислять логарифм положительного действительного числа, то , т.е. одна точка из бесконечного множества попадает на действительную ось, потому что исходный угол . Для любого числа, которое не является действительным положительным, , поэтому происходит сдвиг этой последовательности на часть деления, и ни одна точка не попадёт на действительную ось.

Замечание. Единственная точка в комплексной плоскости, для которой не существует логарифма, это 0. Ведь в этом случае , и не существует .

Пример. Вычислить .

Здесь , . Поэтому  = .

Точки в комплексной плоскости: , , , и так далее.

Ни одного значения на действительной оси нет, и здесь, по сравнению со значениями логарифма положительного числа, сдвиг на половину деления: одна точка ушла вверх с действительной оси, а другая ещё не достигла этой оси. Чертёж:

 

 

ЛЕКЦИЯ 3. 16.09.2019

       Для всякой функции  можно отдельно выделить действительную и мнимую части, и представить в виде

. Таким образом, возникают понятия: действительная и мнимая часть функции, обозначения: , . Итак, комплексной функции можно поставить в соответствие некоторое отображение из  в , а именно . Но график такого отображения был бы в 4-мерном пространстве, поэтому изобразить его в нашем 3-мерном пространстве невозможно. Но мы можем пользоваться неким подобием графика, а именно, рассматривать чертёж искажений плоскости, изучать, в какие линии отображаются горизонтальные либо вертикальные линии из исходной плоскости.

 

Пример.  Разложить  на действительную и мнимую часть, изобразить искажения плоскости при переходе .

1)  =  =  = .

Таким образом, , .

Чтобы исследовать, куда переходят горизонтальные прямые, зафиксируем , при этом  изменяется от  до , пусть движение задано с помощью параметра :

.

Чтобы составить уравнение, взаимосвязывающее , и узнать, какая это кривая, исключим параметр , выразив из второго уравнения: , тогда . Это парабола, лежащая на боку, ветвями направленная вправо, причём чем больше , тем левее вершина, и тем более пологая парабола получается, ведь  при этом меньше. А если , то возникает предельный случай: обе ветви смыкаются в одну линию и образуют правую полуось. Действительная ось отображается на правую полуось в плоскости .

Аналогично, для какой-либо вертикальной прямой:

. Тогда, исключая параметр , получим . Это параболы, направленные ветвями влево, симметричные тем, что были рассмотрены чуть выше.

На чертеже зелёным цветом показаны горизонтальные прямые и их образы при отображении , а красным - вертикальные прямые и их образы:

Пример.  Разложить  на действительную и мнимую часть.

Используем то, что нашли ранее: , тогда

 = = .

Здесь

Пример.  Разложить  на действительную и мнимую часть.

По формуле Эйлера:  =  =  =  = , тогда ,

 

       Изучим деформации плоскости при действии линейной функции вида , где коэффициенты ,  это тоже некоторые комплексные числа. При этом очевидно, что  приводит к сдвигу плоскости на вектор , поэтому сначала более подробно изучим именно  без сдвига.

 = . Но такое отображение можно представить с помощью линейного оператора:

 = .

Введём величину , тогда существует какой-то угол  , для которого , . Причём заметим, что это именно ,  для исходного комплексного числа.

Тогда матрица линейного оператора имеет вид:  то есть это композиция растяжения и поворота плоскости, причём поворот на угол , а растяжение или сжатие на .

(ДОК 9). Доказать что линейное отображение  в комплексной плоскости есть композиция растяжения, поворота и сдвига.

       На этом чертеже показано, как изменяется плоскость при линейном отображении. Красным веделено горизонтальное направление, после отображения оно повёрнуто.

        Замечание. Отображение  соответствует зеркальному отражению плоскости, т.е. оно не сводится к композиции поворота и растяжения.

Доказательство. (ДОК 12).

Запишем 2 условия Коши-Римана. Одно продифференцируем по переменной , а второе по :

.

Сложим теперь эти 2 равенства, но при этом смешанные производные 2 порядка от  при этом совпадают, они вычитаются и дают 0.

. Итак, .

Теперь снова запишем условия Коши-Римана, 1-е дифференцируем по , а второе по .

.

Теперь вычтем из 1-го равенства 2-е.

, тогда .

 

 



ЛЕКЦИЯ 4. 23.09.2019

Пример.  = . Здесь для  не верно уравнение Лапласа: .

Пример.  = . Уравнение Лапласа для обеих частей функции:

1) ,  , в сумме 0.

2) ,  , 0+0=0.

 

Теорема 4. Условия Коши-Римана эквивалентны условию .

Доказательство (ДОК 13). Вспомним, что  можно выразить через  таким образом: , . Сделаем это в функциях .

 = .

Таким образом, функция стала выражена через два аргумента , а значит, можно искать частную производную по .

Вспомним формулу полной производной (из 1 семестра) для случая композиции типа : . Найдём производные от  по  этим методом, причём здесь тоже промежуточные переменные .

, .

При этом такие компоненты как  и  можно найти

из формул , , а именно : 

 = ,  = . Таким образом,

, .

Тогда  =  =

 =  =

 =  .

Выполнение условий Коши-Римана

 в данном случае как раз и эквивалентно тому, что в обеих скобках нули, то есть .

Итак, как видим, наличие  в составе функции приводит к недифференцируемости. Впрочем, то же верно и при наличии  или , в составе которых есть элемент .

 

Решение.

А)  =  =

, далее вычисляем 2 криволинейных интеграла по отрезку, на котором , заменяем , .

При этом .  =  = .

Б) Исходное раскрытие скобок происходит так же, как и в прошлом случае:   но теперь линия  это не отрезок, заданный явным уравнением , а парабола, заданная явным уравнением . Поэтому заменяем , .

 =  =

 = .

Ответ. по отрезку: 1, по параболе: .

       Как видим, в зависимости от формы кривой могут получиться разные ответы, но это здесь потому, что функция не аналитическая, она содержит , а мы доказывали теорему 4 в конце прошлого § о том, что аналитичность равносильна отсутствию  в составе функции, то есть тому, что .

 

 

Пример. Вычислить , где  - окружность радиуса  вокруг точки 0.

Решение. Представим функцию в виде . Движение по окружности можно задать формулами:

В этом случае . Тогда

 =  =  =

домножим на сопряжённое,  =

 =  =

 = =

 = .

Пример. Вычислить , где  - окружность радиуса  вокруг точки .

Решение. Изучим при этом ещё более короткий способ с более компактной записью. Представим  =  = . Тогда .

 =  =  = .

ЛЕКЦИЯ 5. 30.09.2019

Теорема 1. Если  замкнутый контур, внутри которого во всех точках  является аналитической, то .

(ДОК 14). Доказательство. = =

 в двух этих интегралах - циркуляция двух векторных полей  и , они потенциальны по теореме 2 прошлого §, а тогда циркуляция равна 0, то есть получаем .

Теорема 2. Если  является аналитической во всех точках некоторой области , граница которой односвязна, то интеграл от функции  не зависит от пути, то есть имеет одно и то же значение для любой кривой , соединяющей пару точек .

(ДОК 15). Доказательство.  Аналогично прошлой теореме,

= .

Криволинейные интегралы 2 рода от векторных полей  и  не зависят от пути, что доказано ранее в главе «теория поля».

 

       Так как для аналитической функции интеграл не зависит от пути, то для аналитической функции оказывается возможным ввести понятие первообразной. Введём в рассмотрение такую функцию:  которая каждой точке ставит в соответствие интеграл до неё от некоторой фиксированной точки . Вводится по аналогии с вычислением потенциала поля, только в данном случае, вычисляются потенциалы двух полей  и . Докажем, что построенная таким образом функция является первообразной.

Теорема 3. Функция  является первообразной от функции .

(ДОК 16). Доказательство.

Докажем, что производная от  равна .

По определению производной, .

Распишем разность в числителе более подробно.

= .

потому что по свойству 2, в числителе сокращается интеграл по той части, которая от   до , и остаётся только от  до .

 

Распишем более подробно действительную и мнимую часть в интеграле.

 =  

Так как векторные поля в этих криволинейных интегралах потенциальны, то можно пройти по любому пути от точки  до , в частности, по ломаной, где один участок горизонтальный, другой вертикальный (как это делали когда-то при поиске потенциала).

 =

Получилось 4 интеграла, каждый от действительной функции. Для непрерывной функции действительного переменного верна теорема о среднем, т.е. свойство: , значит, для этих 4 интегралов существуют такие точки ,  что выполняется:

, ,

,  

причём при  точка , ведь она находится на отрезке, который стягивается в одну точку, в свою левую границу, аналогично  при .

 

Тогда  =

, в пределе это стремится к

, что равно

 = . Вспомним, что это изначально был числитель в дроби , и тогда  = .

 

Теорема 4. Для аналитической на кривой  функции верна формула Ньютона-Лейбница: .

(ДОК 17). Доказательство.  По построению первообразной,

 и

Но тогда  =  а тогда по 3-му свойству

это , что равно интегралу по кривой, проходящей от  до  (через точку ).

Тогда  =  =  т.к. по свойству 2, их можно объединить. Итак,  = .

Пример. Вычислить  от 0 до  двумя способами:

А) без формулы Б) по формуле Ньютона-Лейбница.

Решение.

А)  =  =

Пусть точки 0 и  соединены по прямой  (вспомним, что интеграл не зависит от пути, поэтому можем соединить их как удобнее для вычислений). Тогда , , и

 =  =  = .

Б) По формуле:  =  =  = = .

Интегральная формула Коши

       Заметим, что в последнем примере в конце прошлой лекции  сократилось и ответ вообще не зависел от  - радиуса окружности. То есть получается, при уменьшении или увеличении окружности ничего не изменится, если та же самая точка разрыва остаётся внутри, а замкнутый контур стягивается к ней, оставляя снаружи область аналитичности. Этот факт докажем в общем случае.

Теорема 1. (Интегральная теорема Коши).

Пусть  некоторый замкнутый контур,  - n замкнутых непересекающихся контуров, лежащих внутри . Функция  является аналитической на всех этих контурах, а также внутри , но вне . Тогда .

Доказательство (ДОК 18).

       Для того, чтобы лучше понять идею доказательства, рассмотрим сначала ситуацию, когда внутри  расположен один контур , то есть оласть аналитичности - кольцо. Можно взять какую-либо пару точек  на  и  соответственно (чтобы точкибыли максимально близко напротив друг друга) и соединить их отрезком. Тогда для комбинированого контура, состоящего из 4 частей: , , ,  внутренняя область, похожая на кольцо с разрезом, это область аналитичности. Мы один раз обходим этот контур, двигаясь по внешнему против часовой стрелки, поэтому и обозначено , затем переходя на внутренний контур по , затем двигаясь по внутреннему в противоположном направлении ( ), и возвращаясь по  снова на внешний контур. Чертёж:

Но если комбинированный контур окружает область аналитичности, то интеграл по нему равен 0.

.

При этом интегралы по  и  и так взаимно уничтожаются, поэтому . Но если сменить направление движение по внутреннему контуру , то интеграл по нему сменил бы знак, тогда: .

Таким образом, интегралы по  и  одинаковы, то есть можно без изменения результата уменьшить область, стянув её к точке разрыва, оставив снаружи какую-то часть области аналитичности.

Если внутри  несколько контуров, внутри которых нарушена аналитичности или даже существование функции, то применяется похожая схема рассуждений, только надо поочерёдно соединить отрезком  с , затем  с  и так далее, до номера n.

Теорема 2. (Интегральная формула Коши).

Пусть  является аналитической на контуре  и внутри него, точка  лежит внутри . Тогда .

Доказательство (ДОК 19).

В рассмотренном примере в конце прошлой лекции мы вычислили , то есть верно . Но мы можем домножить это равенство на любую комплексную константу, и тогда: . Впрочем, тогда это же верно и для константы : получаем . Мы получили выражение, очень похожее на то, которое надо доказать, но ещё не то: ведь здесь в числителе константа, а не функция. Вот если мы теперь ещё и докажем, что , или то же самое, что , то требуемое утверждение будет верно.

Рассмотрим функцию . Это функция, которая участвует в определении предела, ведь .

Таким образом, , то есть  имеет конечный предел в точке , а это значит, что она ограничена в окрестности этой точки, . По теореме 1 (интегральная теорема Коши), интеграл по  можно заменить на интеграл по любой малой окружности  радиуса , лежащей внутри , результат при этом не изменится. Тогда  = , где  - максимальное значение модуля функции,  - длина кривой, по которой происходит интегрирование. Но ведь по теореме 1 это должно быть верно для какого угодно малого . То есть  меньше или равен любой бесконечно-малой величины. Тогда этот интеграл равен 0. То есть  =  = . Значит, , а тогда: 

, т.е.  доказано в итоге.

Интегральная формула Коши позволяет быстро вычислять интегралы по контуру вокруг точки разрыва, фактически не проводя подробное интегрирование. Достаточно убрать из знаменателя ту скобку , которая соответствует этой точке разрыва, подставить в остальную функцию  и домножить на .

Пример. Вычислить .

Решение. Внутри окружности радиуса 1,5  всего одна из двух точек разрыва функции, вторая снаружи. Обозначим в качестве  функцию без , как будто на  делим чуть раньше, а на  позже.

 = , где  это то, что именно обозначается  в интегральной формуле Коши.

Тогда  =  =  = . \

Ответ. .

ЛЕКЦИЯ 6. 07.10.2019

Теорема 3. (Обобщённая интегральная формула Коши).

Пусть  является аналитической на контуре  и внутри него, точка  лежит внутри . Тогда .

Доказательство (ДОК 20).

Продифференцируем по параметру  правую и левую часть равенства в исходной интегральной формуле Коши.

.

 =  =  =  = .

Таким образом, .

Следующая производная от  равна

 = . Аналогично следующая (тертья от исходной функции) равна , далее по индукции для n-й производной получим  = . Тогда .

Рассмотрим примеры, похожие на предыдущий, но в которых будет 2 или 3 степень скобки . По обобщённой интегральной формуле Коши, если скобка во 2 степени, надо не просто убрать её из знаменателя, а после этого ещё и один раз продифференцировать оставшуюся функцию, и лишь затем подставлять . А если 3 степень, то 2 раза продифференцировать, но с 3-й степени начинает ещё и изменяться коэффициент из-за  того, что он уже не равен 1, а будет .

 

Пример. Вычислить .

Решение.  =  =  =  =  = .

Ответ. .

Пример. Вычислить .

Решение. =  =  =

 =  =  = .

Ответ. .

Лемма Доказать, что  = 0 для любого целого .

Доказательство (ДОК 21) Здесь по обобщённой интегральной формуле Коши при любом n получается, что . Затем любая производная от константы есть 0. Поэтому результат всегда 0.

 = 0 для .

 

Особые точки и вычеты

Нули аналитической функции.

Определение. Точка  называется нулём функции , если .

       Мы сначала изучим нули функции, для того, чтобы затем изучить более подробно типы точек разрыва. Если  является нулём для  то в этой же точке предел   равен .

       Вспомним, что в 1 семестре было ещё название «бесконечно-малая» и «бесконечно-большая» функция в точке. Бесконечно-малые могли быть разных порядков. Есть и здесь аналогичное более подробное определение, различающее порядки бесконечно малых:

Определение. Точка  называется нулём порядка m функции , если  и функция представима в виде , где .

Определение. Точка называется правильной точкой функции , если  является аналитической в , и особой точкой, если она не является аналитической в .

Определение. Точка называется изолированной особой точкой, если в некоторой её окрестности  нет других особых точек.

 

Существует такая классификация особых точек в зависимости от предела .

 

 

Название Устранимая особая точка Полюс Существенно-особая точка
При каком условии   не существует
Пример ( )  =  =  =

 

Лемма. Точка  является нулём функции  она является полюсом функции .

Док-во очевидно:  является нулём функции  функция  представима в виде , причём

. Это эквивалентно тому, что  =

, где , а предел знаменателя равен 0. Это означает, что .

В связи с этим, естественным образом возникает определение полюса порядка : точка  называется полюсом порядка m для функции , если для функции  она является нулём порядка m.

Замечание.  Нуль и полюс функции соответствуют понятиям «бесконечно малая» и «бесконечно большая» функция в точке (из 1 семестра).

Пример. Указать тип всех особых точек для функции:

.

Решение.  В знаментателе нули 1-го, 2-го и 3-го порядка, а именно, точки 2,3 и 4. Тогда для :  полюс 1-го порядка,

 полюс 2-го порядка,     полюс 3-го порядка.

 

Теорема. Если , причём точка  является нулём порядка m для функции , и нулём порядка n для функции , то при  точка  устранимая или правильная точка, а при  полюс порядка  для функции .

Доказательство (ДОК 22). Если  - нуль порядка m и n соответственно для числителя и знаменателя, то  =  =  где  для каждой из двух функций. Тогда можно обозначить  и в итоге , это и означает, что полюс порядка .

Пример. Определить тип особой точки  для функции .

Решение. Представим функцию в числителе в виде разложения в ряд Тейлора.

 =  =  в числителе нуль 1 порядка, а в знаменателе 4-го. Тогда точка  полюс 3 порядка.

 =  = . В числителе после сокращения осталась функция, имеющая ненулевой предел.

ЛЕКЦИЯ 7. 14.10.2019

ЛЕКЦИЯ 8. 21.10.2019

ЛЕКЦИЯ 9. 28.10.2019

ЛЕКЦИЯ 10. 11.11.2019

ЛЕКЦИЯ 11. 18.11.2019

ЛЕКЦИЯ 12. 25.11.2019

ЛЕКЦИЯ 13. 02.12.2019

ЛЕКЦИЯ 14. 09.12.2019

ЛЕКЦИЯ 15. 16.12.2019

ЛЕКЦИЯ 16. 23.12.2019

 



Литература

1. Л.И.Магазинников. Высшая математика III. Функции комплексного переменного. Ряды. Интегральные преобразования

http://edu.tusur.ru/publications/2258 

 

2. А.П.Ерохина, Л.Н. Байбакова. Высшая математика III в упражнениях с задачами и решениями.

http://narod.ru/disk/29273915001/eroh-bajb.djvu.html

 

3. А.А.Ельцов, Т.А.Ельцова. Интегральное исчисление и дифференциальные уравнения http://edu.tusur.ru/publications/2259 

 

4. Практикум по интегральному исчислению и дифференциальным уравнениям: Учебное пособие / Ельцов А. А., Ельцова Т. А. — 2005. 204 с. http://edu.tusur.ru/publications/39

 

5. Воробьёв Н.Н. Теория рядов. Санкт-Петербург, 2002, изд-во «Лань». ISBN 5-8114-0446-8  

 

 

Приходовский М.А.

Математика

Курс лекций

Семестр 3

Учебное пособие для специальности

Дата: 2019-11-01, просмотров: 172.