МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА И ПРОДОВОЛЬСТВИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
ДЕПАРТАМЕНТ КАДРОВОЙ ПОЛИТИКИ И ОБРАЗОВАНИЯ
Московский государственный агроинженерный университет
имени В.П. Горячкина
Баграмов Л.Г. Колокатов А.М.
РАСЧЕТ РЕЖИМОВ РЕЗАНИЯ
ПРИ ФРЕЗЕРОВАНИИ
Методические рекомендации
Часть I - торцовое фрезерование
МОСКВА 2000
УДК 631
Расчет режимов резания при торцовом фрезеровании.
Методические рекомендации.
Составители: Л.Г. Баграмов, А.М. Колокатов - МГАУ, 2000. - ХХ с.
В части I методических указаний даны общие теоретические сведения о фрезеровании, изложена последовательность операций по расчёту режима резания при торцовом фрезеровании на основе справочных данных. Методические указания могут быть использованы при выполнении домашнего задания, в курсовом и дипломном проектировании студентами факультетов ТС в АПК, ПРИМА и Инженерно-педагогического, а также при проведении практических и научно-исследовательских работ.
Рис.9, табл.ХХ, список библ. - ХХ наименований.
Рецензент: Бочаров Н.И. (МГАУ)
Ó Московский государственный агроинженерный
университет имени В.П. Горячкина. 2000.
ОБЩИЕ СВЕДЕНИЯ
Элементы теории резания
Фрезерование является одним из наиболее распространённых и высокопроизводительных способов механической обработки резанием. Обработка производится многолезвийным инструментом - фрезой.
При фрезеровании главное движение резания Dr - вращение инструмента, движение подачи DS - перемещение заготовки (Рис. 1.), на карусельно - фрезерных и барабанно-фрезерных станках движение подачи может осуществляться вращением заготовки вокруг оси вращающегося барабана или стола, в отдельных случаях движение подачи может осуществляться перемещением инструмента (копировальное фрезерование).
Фрезерованием обрабатываются горизонтальные, вертикальные, наклонные плоскости, фасонные поверхности, уступы и пазы различного профиля. Особенностью процесса резания при фрезеровании является то, что зубья фрезы не находятся в контакте с обрабатываемой поверхностью всё время. Каждое лезвие фрезы последовательно вступает в процесс резания, изменяя толщину срезаемого слоя от наибольшей к наименьшей, или наоборот. Одновременно в процессе резания могут находиться несколько режущих кромок. Это вызывает ударные нагрузки, неравномерность протекания процесса, вибрации и повышенный износ инструмента, повышенные нагрузки на станок.
При обработке цилиндрическими фрезами (режущие кромки расположены на цилиндрической поверхности) рассматривается два способа обработки (Рис. 2.) в зависимости от направления движения подачи заготовки:
- встречное фрезерование, когда направление движения режущей кромки фрезы, находящейся в процессе резания, противоположно направлению движения подачи;
- попутное фрезерование, когда направление движения режущей кромки фрезы, находящейся в процессе резания, совпадает с направлением движения подачи.
При встречном фрезеровании нагрузка на зуб возрастает от нуля до максимума, силы, действующие на заготовку, стремятся оторвать её от стола, а стол поднять. Это увеличивает зазоры в системе СПИД (станок - приспособление - инструмент - деталь), вызывает вибрации, ухудшает качество обработанной поверхности. Этот способ хорошо применим для обработки заготовок с коркой, производя резание из-под корки, отрывая её, тем самым значительно облегчая резание. Недостатком такого способа является большое скольжение лезвия по предварительно обработанной и наклёпанной поверхности. При наличии некоторого округления режущей кромки она не сразу вступает в процесс резания, а поначалу проскальзывает, вызывая большое трение и износ инструмента по задней поверхности. Чем меньше толщина срезаемого слоя, тем больше относительная величина проскальзывания, тем большая часть мощности резания расходуется на вредное трение.
При попутном фрезеровании этого недостатка нет, но зуб начинает работу с наибольшей толщины срезаемого слоя, что вызывает большие ударные нагрузки, однако исключает начальное проскальзывание зуба, уменьшает износ фрезы и шероховатость поверхности. Силы, действующие на заготовку, прижимают её к столу, а стол - к направляющим станины, что уменьшает вибрации и повышает точность обработки.
Конструкция фрез.
Инструментом при фрезеровании являются фрезы (от французского la frais - клубника), представляющие собой многолезвийный инструмент, лезвия которого расположены последовательно в направлении главного движения резания, предназначенные для обработки с вращательным главным движением резания без изменения радиуса траектории этого движения и хотя бы с одним движением подачи, направление которого не совпадает с осью вращения.
Фрезы бывают:
по форме - дисковые, цилиндрические, конические;
по конструкции - цельные, составные, сборные и насадные, хвостовые;
по применяемому материалу режущей кромки - быстрорежущие и твердосплавные;
по расположению лезвий - периферийные, торцовые и периферийно-торцовые;
по направлению вращения - праворежущие и леворежущие;
по форме режущей кромки - профильные (фасонные и обкаточные), прямозубые, косозубые, с винтовым зубом;
по форме задней поверхности зуба - затылованные и незатылованные,
по назначению - концевые, угловые, прорезные, шпоночные, фасонные, резьбовые, модульные и др.
Рассмотрим элементы и геометрию фрезы на примере цилиндрической фрезы с винтовыми зубьями (Рис. 3.).
У фрезы различают переднюю поверхность лезвия Аγ, главную режущую кромку К, вспомогательную режущую кромку К', главную заднюю поверхность лезвия Аα, вспомогательную заднюю поверхность лезвия А'α, вершину лезвия, корпус фрезы, зуб фрезы, спинку зуба, фаску.
В координатных плоскостях статической системы координат (Рис. 4.) рассматриваются геометрические параметры фрезы, среди которых γ, α - передний и задний углы в главной секущей плоскости, γН - передний угол в нормальной секущей плоскости, ω - угол наклона зуба.
Передний угол γ облегчает образование и сход стружки, главный задний угол α способствует уменьшению трения задней поверхности по обработанной поверхности заготовки. У незатылованных зубьев передний угол выполняется в пределах γ = 10о...30о, задний угол α = 10о...15о в зависимости от обрабатываемого материала.
У затылованного зуба задняя поверхность выполняется по спирали Архимеда, что обеспечивает ему постоянство профиля сечения при всех переточках инструмента. Затылованный зуб перетачивается только по передней поверхности и выполняется, ввиду сложности, только у профильного инструмента (фасонного и обкаточного), т.е. форма режущей кромки которого определена формой обработанной поверхности. Передний угол затылованных зубьев выполняется, как правило, равным нулю, задний угол имеет значения α = 8о...12о.
Угол наклона зубьев ω обеспечивает более плавное вхождение лезвия в процесс резания по сравнению с прямыми зубьями и придаёт определённое направление сходу стружки.
Зуб торцовой фрезы имеет режущее лезвие более сложной формы. Режущая кромка состоит (Рис. 5.) из главной, переходной и вспомогательной, имеющие главный угол в плане φ, угол в плане переходной режущей кромки φп и вспомогательный угол в плане φ1. Геометрические параметры фрезы рассматриваются в статической системе координат. Углы в плане это углы в основной плоскости Рvc. Главный угол в плане φ - это угол между рабочей плоскостью РSc и плоскостью резания Рnc Величина главного угла в плане определяется исходя из условий резания как у токарного резца, при φ=0˚ режущая кромка становится только торцовой, а при φ=90˚ она становится периферийной. Вспомогательный угол в плане φ1 - это угол между рабочей плоскостью РSc и вспомогательной плоскостью резания Р'nc, он составляет 5о...10о, а угол в плане переходной режущей кромки - половину от главного угла в плане. Переходное режущее лезвие повышает прочность зуба.
Износ фрез определяется, так же как и при точении, величиной износа по задней поверхности. Для быстрорежущей фрезы допустимая ширина изношенной ленточки по задней поверхности составляет при черновой обработке сталей 0,4...0,6 мм, чугунов - 0,5...0,8 мм, при получистовой обработке сталей 0,15...0,25 мм, чугунов - 0,2...0,3 мм. Для твёрдосплавной фрезы допустимый износ по задней поверхности составляет 0,5...0,8 мм. Стойкость цилиндрической быстрорежущей фрезы составляет Т = 30...320 мин, в зависимости от условий обработки, в некоторых случаях достигает 600 мин, стойкость твёрдосплавной фрезы Т= 90...500 мин.
Различают три вида фрезерования - периферийное, торцовое и периферийно - торцовое. К основным плоскостям и поверхностям, обрабатываемым на консольных фрезерных станках (Рис. 6.), относятся:
горизонтальные плоскости; вертикальные плоскости; наклонные плоскости и скосы; комбинированные поверхности; уступы и прямоугольные пазы; фасонные и угловые пазы; пазы типа "ласточкин хвост"; закрытые и открытые шпоночные пазы; пазы под сегментные шпонки; фасонные поверхности; цилиндрические зубчатые колёса методом копирования.
Горизонтальные плоскости обрабатываются цилиндрическими (Рис. 6. а) на горизонтально-фрезерных станках и торцовыми (Рис. 6. б) на вертикально-фрезерных станках фрезами. Поскольку у торцовой фрезы одновременно участвует в резании большее количество зубьев, обработка ими более предпочтительна. Цилиндрическими фрезами обрабатываются, как правило, плоскости шириной до 120 мм.
Вертикальные плоскости обрабатывают торцовыми фрезами на горизонтальных станках и концевыми - на вертикальных (Рис. 6. в, г).
Наклонные плоскости обрабатывают торцовыми и концевыми фрезами на вертикальных станках с поворотом оси шпинделя (Рис. 6. д, е), и на горизонтальных станка угловыми фрезами (Рис. 6. ж).
Комбинированные поверхности обрабатывают набором фрез на горизонтальных станках (Рис. 6. з).
Уступы и прямоугольные пазы обрабатывают дисковыми (на горизонтальных) и концевыми (на вертикальных) фрезами (Рис. 6. и, к), при этом концевые фрезы допускают большие скорости резания, так как одновременно участвует в работе большее количество зубьев. При обработке пазов дисковые фрезы предпочтительнее.
Фасонные и угловые пазы обрабатываются на горизонтальных станках фасонными, одно- и двухугловыми фрезами (рис. 6. л, м).
Паз типа "ласточкин хвост" и Т-образные пазы обрабатываются на вертикально-фрезерных станках, как правило, за два прохода, сначала концевой фрезой (или на горизонтально-фрезерном станке дисковой фрезой) обрабатывается прямоугольный паз по ширине верхней части. После этого окончательно паз обрабатывается концевой одноугловой и специальной Т-образной (Рис. 6. н, о) фрезой.
Закрытые шпоночные пазы обрабатываются концевыми фрезами, а открытые - шпоночными на вертикальных станках (Рис. 6. п, р).
Пазы для сегментных шпонок обрабатываются на горизонтально-фрезерных станках дисковыми фрезами (Рис. 6. с).
Фасонные поверхности незамкнутого контура с криволинейной образующей и прямолинейной направляющей обрабатываются на горизонтальных и вертикальных станках фасонными фрезами (Рис. 6. т).
Торцовое фрезерование - наиболее распространенный и производительный способ обработки плоских поверхностей деталей в условиях серийного и массового производства.
ТОРЦОВОЕ ФРЕЗЕРОВАНИЕ.
Выбор торцовой фрезы
Выбор конструкции фрезы.
При выборе конструкции (типа) фрезы предпочтительным является применение сборных конструкций фрез с неперетачиваемыми пластинами из твердого сплава. Механическое крепление пластин дает возможность поворота их с целью обновления режущей кромки и позволяет использовать фрезы без переточки. После полного износа пластины она заменяется новой. Завод изготовитель снабжает каждую фрезу 8...10 комплектами запасных пластин. Весь комплект пластин можно заменить непосредственно на станке, при этом затрата времени на замену 10...12 ножей не превышает 5...6 минут.
Выбор схемы фрезерования
Схемы фрезерования определяется по расположению оси торцовой фрезы заготовки относительно средней линии обрабатываемой поверхности (рис.8.). Различают симметричное и несимметричное торцовое фрезерование /5/.
Симметричным называют такое фрезерование, при котором ось торцовой фрезы проходит через среднюю линию обрабатываемой поверхности (рис. 8.а).
Несимметричным фрезерованием называют такое фрезерование, при котором ось торцовой фрезы смещена относительно средней линии обрабатываемой поверхности (рис. 8.б, 8.в).
Симметричное торцовое фрезерование делится на полное, когда диаметр фрезы D равен ширине обрабатываемой поверхности В, и неполное, когда D больше В (рис.8.а).
Несимметричное торцовое фрезерование может быть встречным или попутным. Отнесение фрезерования к этим разновидностям производят по аналогии с фрезерованием плоскости цилиндрической фрезой.
При несимметричном встречном торцовом фрезеровании (рис.8.б) толщина срезаемого слоя a изменяется от некоторой небольшой величины (зависящей от величины смещения) до наибольшей amax=Sz, а затем несколько уменьшается. Смещение зуба фрезы за пределы обрабатываемой поверхности со стороны зуба, начинающего резание, обычно принимается в пределах С1 = (0,03...0,05) • D
При несимметричном попутном торцовом фрезеровании (рис.8.в) зуб фрезы начинает работать с толщиной среза близкой к максимальной. Смещение зуба фрезы за пределы обрабатываемой поверхности со стороны зуба, заканчивающего резание, принимается незначительным, близким к нулю) С2 ≈ 0.
При обработке чугунных заготовок во многих случаях диаметр фрезы меньше ширины обрабатываемой поверхности поскольку чугунные заготовки ввиду хрупкости чугуна, особенно при изготовлении корпусных деталей, выполняются больших габаритов.
Торцовое фрезерование чугунных заготовок при B < Dф рекомендуется проводить при симметричном расположении фрезы.
При торцовом фрезеровании стальных заготовок обязательным является их несимметричное расположение относительно фрезы, при этом:
- для заготовок из конструкционных углеродистых и легированных сталей и заготовок имеющих корку (черновое фрезерование) сдвиг заготовок - в направлении врезания зуба фрезы (рис. 8.б), чем обеспечивается начало резания при малой толщине срезаемого слоя;
- для заготовок из жаропрочных и коррозийно-стойких сталей и при чистовом фрезеровании сдвиг заготовки - в сторону выхода зуба фрезы из резания (рис. 8.в), чем обеспечивается выход зуба из резания с минимально возможной толщиной срезаемого слоя.
Несоблюдение указанных правил приводит к значительному снижению стойкости фрезы /5/.
Назначение режима резания
К элементам режима резания при фрезеровании относятся (Рис. 9.):
- глубина резания;
- скорость резания;
- подача;
- ширина фрезерования.
Глубина резания t определяется как расстояние между точками обрабатываемой и обработанной поверхностей находящихся в плоскости резания и измеренное в направлении, перпендикулярном направлению движения подачи. В отдельных случаях эта величина может измеряться как разность расстояний точек обрабатываемой и обработанной поверхностей до стола станка или до какой-либо другой постоянной базы, параллельной направлению движения подачи.
Глубину резания выбирают в зависимости от припуска на обработку, мощности и жесткости станка. Надо стремиться вести черновое и получистовое фрезерование за один проход, если это позволяет мощность станка. Обычно глубина резания составляет 2...6 мм. На мощных фрезерных станках при работе торцовыми фрезами глубина резания может достигать 25 мм. При припуске на обработку более 6 мм и при повышенных требованиях к величине шероховатости поверхности фрезерование ведут в два перехода: черновой и чистовой.
При чистовом переходе глубину резания принимают в пределах 0,75...2 мм. Независимо от высоты микронеровностей глубина резания не может быть меньшей величины. Режущая кромка имеет некоторый радиус округления, который по мере износа инструмента увеличивается, при малой глубине резания материал поверхностного слоя подминается и подвергается пластическому деформированию. В этом случае резания не происходит. Как правило, при небольших припусках на обработку и необходимости проведения чистовой обработки (величина шероховатостей Ra = 2…0,4 мкм) глубина резания берётся в пределах 1 мм.
При малой глубине резания целесообразно применять фрезы с круглыми пластинами (ГОСТ 22086-76, ГОСТ 22088-76). При глубине резания, большей З...4 мм, применяют фрезы с шести-, пяти- и четырехгранными пластинами (табл.2).
При выборе числа переходов необходимо учитывать требования по шероховатости обработанной поверхности:
- черновое фрезерование - Ra = 12,5...6,3 мкм (3...4 класс);
- чистовое фрезерование - Ra = 3,2...1,6 мкм (5...6 класс);
- тонкое фрезерование - Ra = 0,8...0,4 мкм (7...8 класс).
Для обеспечения чистовой обработки необходимо провести черновой и чистовой переходы, количество рабочих ходов при черновой обработке определяют по величине припуска и мощности станка. Число рабочих ходов при чистовой обработке определяется требованием шероховатости поверхности.
В производственных условиях при необходимости проведения черновой и чистовой обработки они разделяются на две отдельные операции. Это вызвано следующими соображениями.
Черновая и чистовая обработки проводятся с применением различного материала режущей части фрезы и при разных скоростях резания что вызвало бы неоправданно большие затраты времени на переналадку станка , если эти переходы будут выполняться в одной операции.
Черновая обработка приводит к большим вибрациям и неравномерным и знакопеременным нагрузкам, это, в свою очередь, приводит к быстрому износу станка и потере точности обработки.
Черновая обработка приводит к образованию большого количества стружки, а также абразивной пыли, что требует специальных мер по уборке отходов. Как правило, станки для черновой обработки находятся обособленно от станков, выполняющих окончательную - чистовую и тонкую.
Подача при фрезеровании - это отношение расстояния, пройденного рассматриваемой точкой заготовки в направлении движения подачи, к числу оборотов фрезы или к части оборота фрезы, соответствующей угловому шагу зубьев.
Таким образом, при фрезеровании рассматривается подача на оборот So(мм/об) - перемещение рассматриваемой точки заготовки за время, соответствующее одному обороту фрезы, и подача на зуб Sz(мм/зуб) - перемещение рассматриваемой точки заготовки за время, соответствующее повороту фрезы на один угловой шаг зубьев.
Помимо этого рассматривается также скорость движения подачи vs (ранее определялась как минутная подача и в старой литературе и на некоторых станках такой термин ещё применяется), измеряемая в мм/мин. Скорость движения подачи - это расстояние, пройденное рассматриваемой точкой заготовки вдоль траектории этой точки в движении подачи за минуту. Эта величина используется на станках для наладки на необходимый режим, поскольку у фрезерных станков движение подачи и главное движение резания кинематически не связаны между собой.
Применение соотношения скоростей подачи и резания помогает правильно определить величины So и Sz. Используя зависимости: So = Sz · z, vs = So · n где z - число зубьев фрезы, n - число оборотов фрезы (об/мин) определим vs = So · n = Sz · z · n.
Исходной величиной при черновом фрезеровании является подача на один зуб Sz, так как она определяет жёсткость зуба фрезы. Подачу при черновой обработке выбирают максимально возможной. Ее величина может быть ограничена прочностью механизма подачи станка, прочностью зуба фрезы, жесткостью системы СПИД, прочностью и жесткостью оправки и по другим соображениям. При чистовом фрезеровании определяющей является подача на один оборот фрезы So, которая влияет на величину шероховатости обработанной поверхности.
Рекомендуемые подачи для различных условий резания приведены в таблицах 8, 9, 10 /5, 6/.
Ширина фрезерования B (мм) - величина обрабатываемой поверхности, измеренная в направлении, параллельном оси фрезы - при периферийном фрезеровании, и перпендикулярном к направлению движения подачи - при торцовом фрезеровании. Ширина фрезерования определяется наименьшей из двух величин: ширины обрабатываемой заготовки и длины или диаметра фрезы.
где D - диаметр фрезы (мм) по наиболее удалённой от оси вращения точке режущей кромки, n - число оборотов фрезы (мм/об).
где Cv - коэффициент, характеризующий материал заготовки и фрезы;
T - стойкость фрезы (мин);
t - глубина резания (мм);
Sz - подача на зуб (мм/зуб);
B - ширина фрезерования (мм);
Z - число зубьев фрезы;
q, m, x, y, u, p - показатели степени;
kv - общий поправочный коэффициент на изменённые условия обработки.
Величины Cv q, m, x, y, u, p приведены в табл.11.
Средние значения периода стойкости торцовых фрез при диаметре фрезы следующие
Таблица 2.2.4. - 1
Диаметр фрезы (мм) | 40...50 | 65...125 | 160...200 | 250...315 | 400...650 |
Стойкость (мин) | 120 | 180 | 240 | 300 | 800 |
Общий поправочный коэффициент Kv. Всякая эмпирическая формула определяется при постоянстве некоторых факторов. В данном случае этими факторами являются физико - механические сойства заготовки и материала режущей части инструмента, геометрические параметры инструмента и т.д. В каждом конкретном случае эти параметры меняются. Для учёта этих изменений и вводится общий поправочный коэффициент Kv, который представляет собой произведение отдельных поправочных коэффициентов, Каждый из которых отражает изменение, относительно исходных, отдельных параметров /5/ :
Kv = Kmv • Kпv • Kиv • Kjv,
Kmv - коэффициент, учитывающий физико-механические свойства обрабатываемого материала, таблицы 12, 13;
Kпv - коэффициент, учитывающий состояние поверхностного слоя заготовки, таблица 14;
Kиv - коэффициент, учитывающий инструментальный материал, таблица 15;
Kjv - коэффициент, учитывающий величину j - главного угла в плане,
Таблица 2.2.4. - 2
j | 150 | 300 | 450 | 600 | 750 | 900 |
Kjv | 1,6 | 1,25 | 1,1 | 1,0 | 0,93 | 0,87 |
где n - число оборотов фрезы, мин-1; D - диаметр фрезы, мм.
По паспорту станка выбирают такую ступень скорости, при которой число оборотов фрезы будет равно расчётному или меньше его, т.е. nф £ n, где nф - фактическое число оборотов фрезы, которое должно быть установлено на станке. Допускается применение такой ступени скорости, при которой увеличение фактического числа оборотов по отношению к расчетному будет не более 5%. По выбранному числу оборотов шпинделя станка уточняют фактическую скорость резания
vS(Sм) = Sz • z • nф = Sо • nф (мм/мин.)
Затем по паспорту станка выбирают наиболее подходящее значение - ближайшее меньшие или равное расчётной величине.
Основное время
Основное время при фрезеровании равно отношению длины пути, пройденного фрезой, за число рабочих ходов к скорости движения подачи, и определяется по формуле
- i - число рабочих ходов;
- l - длина обрабатываемой заготовки, мм;
- l1 - величина врезания фрезы, мм;
- l2 - величина перебега фрезы, мм; l2 = 1...5 мм.
Величина врезания l1 при фрезеровании торцовыми фрезами определяется из условий:
- при несимметричном встречном (для случая на рис.2б):
l1 = 0,5 • D,
где D - диаметр фрезы, мм; В - ширина заготовки, мм; C1 - величина смещения фрезы относительно торца заготовки (рис.2б).
Вспомогательное время.
К этому времени относится время, затрачиваемое на установку, закрепление, снятие заготовки (табл. 21), время на управление станком при подготовке рабочего хода (табл. 22), выполнение измерений в процессе обработки (табл. 23).
Оперативное время.
Сумму основного и вспомогательного времени называют оперативным временем:
Tоп = То + Твсп .
Оперативное время является основным составляющим штучного времени.
ПРИМЕР РАСЧЕТА РЕЖИМА РЕЗАНИЯ
Условия задачи.
Исходные данные.
Исходными данными для расчёта режима резания являются:
материал заготовки - поковка из стали 20Х;
предел прочности материала заготовки - sв = 800 МПа (80 кг/мм2);
ширина обрабатываемой поверхности заготовки, В - 100 мм;
длина обрабатываемой поверхности заготовки, L - 800 мм;
требуемая шероховатость обработанной поверхности, Ra - 0,8 мкм (7 класс шероховатости);
общий припуск на обработку, h - 6 мм;
средняя дневная программа производства по данной операции, П - 200 шт.
Цель расчётов.
В результате проведённых расчётов необходимо:
выбрать фрезу по элементам и геометрическим параметрам;
выбрать фрезерный станок;
рассчитать величины элементов режима резания - глубина резания t, подача S, скорость резания v;
провести проверку выбранного режима резания по мощности привода и прочности механизма подачи станка;
произвести расчёт времени, необходимого для выполнения операции;
произвести расчёт необходимого количества станков;
провести проверку эффективности выбранного режима резания и подбора оборудования.
Порядок расчета.
Назначение глубины резания.
При назначении глубины резания в первую очередь из общего припуска выделяется та его часть, которая остаётся для проведения чистовой обработки - t2 = 1 мм. Чистовое фрезерование проводится за 1 рабочий ход i2 = 1. Отсюда припуск h1 при черновом фрезеровании составит :
h1 = 6 - 1 = 5 мм.
Для снятия этого припуска достаточно одного рабочего хода, поэтому принимаем число рабочих ходов при черновом фрезеровании i1 = 1. Тогда глубина резания t1 при черновом фрезеровании составит
t1 = h1 / i1 = 5 / 1 = 5 мм.
Назначение подачи.
Подачу при черновом фрезеровании выбираем из таблиц 8 и 9. Для торцовых фрез с пластинами из твёрдого сплава (табл. 8) с мощностью станка > 10 кВт при несимметричном встречном фрезеровании для пластинки Т5К10 подача на зуб находится в пределах Sz1 = 0,32…0,40 мм/зуб. Принимаем меньшую величину для гарантированного обеспечения условия по мощности на шпинделе Sz1 = 0,32 мм/зуб, подача на оборот составит . Sо1 = Sz1 • z =0,32 • 12 = 3,84 мм/об.
Подачу при чистовом фрезеровании выбираем по таблице 10. Для торцовых фрез с пластинами из твёрдого сплава (часть Б) с материалом, имеющим σв ≥ 700 МПа с шероховатостью обработанной поверхности Ra = 0,8 мкм с углом j1 = 50 подача на оборот фрезы находится в пределах Sо2 = 0,30…0,20 мм/об. Принимаем большую величину для повышения производительности процесса Sо2 = 0,30 мм/об. При этом подача не зуб составит
Sz2 = Sо2 / z = 0,30 / 12 = 0,025 мм/зуб.
Уточнение режимов резания
По паспорту станка 6Р13 уточняем возможную настройку числа оборотов фрезы и находим фактические значения для черновой обработки nф1 = 200 мин-1, для чистовой обработки nф2 = 1050 мин-1, т.е. выбираем ближайшие наименьшие значения от расчётных. В результате этого изменится и фактическая скорость резания, которая составит при черновой обработке
vф1 = πDn/1000 = 3,14 • 125 • 200/1000 = 78,50 м/мин ,
а при чистовой обработке
vф2 = πDn/1000 = 3,14 • 125 • 1050/1000 = 412,12 м/мин .
Для уточнения величин подач необходимо рассчитать скорость движения подачи vS по величине подачи на зуб и на оборот
vS = So • n = Sz • z • n;
vS1 = 0,32 • 12 • 200 = 768 мм/мин ; vS2 = 0,3 • 1050 = 315 мм/мин.
По паспорту станка находим возможную настройку на скорость движения подачи, выбирая ближайшие наименьшие значения, vS1 = 800 мм/мин, поскольку эта величина только на 4,17% выше расчётной и vS2 = 315 мм/мин. Исходя из принятых величин уточняем значения подач на зуб и на оборот
Soф1 = 800 / 200 = 4 мм/об; Szф1 = 4 / 12 = 0,333 мм/зуб;
Soф2 = 315 / 1050 = 0,3 мм/об; Szф2 = 0,3 / 12 = 0,025 мм/зуб;
Расчёт основного времени.
Длина фрезерования l = 800 мм;
Величина врезания фрезы l1 определяется для условия несимметричного встречного фрезерования, принимаем С1 = 0,04 • D,
Величину перебега фрезы l2 для чернового и чистового фрезерования принимаем одинаковой l2 = 5 мм.
Число рабочих ходов i при чистовом и черновом фрезеровании равно 1.
Общая длина прохода фрезы для чернового и чистового фрезерования
L = 800 + 38 + 5 = 843 мм.
Основное время при торцовом фрезеровании заготовки за черновой и чистовой переходы составит:
ПРИЛОЖЕНИЯ
Таблица 1
Стандартные торцовые фрезы
ГОСТ | Типы торцовых фрез | Диаметр фрезы, (мм) / число ножей фрезы, (шт). |
26595-85 | Фрезы торцовые с механическим креплением многогранных пластин. Типы и основные размеры. | 50/5, 63/6, 80/8, (80/10), 100/8, 100/10, 125/8, 125/12, 160/10, 160/14, (160/16), 200/12, 200/16, (200/20), 250/14, 250/24, 315/18, 315/30, 400/20, 400/40, 500/26, 500/50 |
24359-80 | Фрезы торцовые насадные со вставными ножами, оснащенными пластинами из твердого сплава. Конструкция и размеры. | 100/8, 125/8, 160/10, 200/12, 250/14, 315/18, 400/20, 500/26, 630/30 |
22085-76 | Фрезы торцовые насадные с механическим креплением пятигранных твердосплавных пластин | 100/8, 125/8, 160/10, 200/12 |
22087-76 | Фрезы торцовые концевые с механическим креплением пятигранных твердосплавных пластин | 63/5, 80/6 |
22086-76 | Фрезы торцовые насадные с механическим креплением круглых твердосплавных пластин | 100/10, 125/12, 160/14, 200/16 |
22088-76 | Фрезы торцовые концевые с механическим креплением круглых твердосплавных пластин | 50/5, 63/6, 80/8 |
9473-80 | Фрезы торцовые насадные мелкозубые со вставными ножами, оснащенными пластинами из твердого сплава. Конструкция и размеры. | 100/10, 125/12, 160/16, 200/20, 250/24, 315/30, 400/36, 500/44, 630/52 |
9304-69 | Фрезы торцовые насадные. Типы и основные размеры. | 40/10, 50/12, 63/14, 80/16, 100/18, 63/8, 80/10,100/12, |
16222-81 | Фрезы торцовые насадные для обработки легких сплавов | 50, 63, 80 при z = 4 |
16223-81 | Фрезы торцовые насадные со вставными ножами с твердосплавными пластинами для обработки легких сплавов. Конструкция и размеры. | 100/4, 125/6, 160/6, 200/8, 250/10, 315/12 |
Примечание: В скобках указаны фрезы другого исполнения
Таблица 2
Таблица 3
Таблица 4
Таблица 6
Таблица 7
Из быстрорежущей стали Р18
1. Передние углы g в град.
Фрезы | Сталь, sв МПа | Чугун, НВ | |||||
< 600 | 600-1000 | > 1000 | < 150 | 150-220 | > 220 | ||
Торцовые | 200 | 150 | 100 | 150 | 100 | 50 |
2. Задние углы a в град.
Фрезы торцовые | Главный an | Торцовый a1 |
- с мелкими зубьями - со вставными ножами и крупными зубьями | 160 120 | 80 80 |
3. Углы в плане и переходной кромки в град.
Фрезы торцовые для стали | Главный, j | Вспомога-тельный, j1 | Переходной кромки, j0 | Длина пере- ходной кромки, ¦0 , мм |
- со вставными ножами - цельные | 45...600 900 | 1...20 1...20 | - 450 | - 1...2 |
Таблица 8
Таблица 9
Из быстрорежущей стали
Мощность | Жесткость | Подача на один зуб Sz, мм, при обработке : | ||
станка, кВт | системы СПИД | стали | чугуна | |
Фрезы с мелким зубом
Примечания. Большие значения подач брать для меньшей глубины и ширины
фрезерования, меньшие - для больших значений глубины и ширины.
Таблица 10
Подачи на оборот фрезы, мм/об, при чистовом фрезеровании :
Таблица 11
Значения коэффициента С v и показателей степени в формуле
Таблица 12
Поправочный К m v , учитывающий физико-механические свойства
Обрабатываемого материала.
Обрабатываемый материал | Расчетная формула |
Сталь | Кmv = Кг• (750/sв)nv |
Серый чугун | Кmv = ( 190/НВ )nv |
Ковкий чугун | Кmv = ( 150/НВ )nv |
Примечания:. 1. sв и НВ - фактические параметры, характеризующие обрабатываемый материал, для которого рассчитывается скорость резания.
2. Значения коэффициента Кг , характеризующий группу стали по обрабатываемости, и показателя степени nv приведены в табл.13.
Таблица 13
Значения коэффициента К г и показатели степени n v в формуле
для рассчета коэффициента обрабатываемости К m v
Обрабатываемый | Коэффициент Кг для материала инструмента | Показатели степени nv при обработке фрезами | ||
материал | из быстрорежущей стали | из твердого сплава | из быстрорежущей стали | из твердого сплава |
Сталь : - углеродистая (С£0,6 %) : sв < 450 МПа sв = 450...550 МПа sв > 550 МПа - повышенной и высокой обрабатываемости резанием - углеродистая (С>0,6 %) - быстрорежущие | 1,0 1,0 1,0 1,2 0,8 0,6 | 1,0 1,0 1,0 1,1 0,9 0,7 | -0,9 -0,9 -0,9 - 1,35 1,0 | 1,0 1,0 1,0 1,0 1,0 1,0 |
Чугун : серый ковкий | - - | - - | 0,95 0,85 | 1,25 1,25 |
Таблица 14
Поправочный коэффициент К пv , зависимости скорости резания от
Таблица 16
Значения коэффициента С р и показателей степени в формуле
главной составляющей силы резания Р z при торцовом фрезеровании
Материал режущей части | Коэффициент и показатели степени | ||||||
инструмента | Cр | x | y | u | w | q | |
Обработка конструкционной углеродистой стали, sв = 750 МПа | |||||||
Твердый сплав | 825 | 1,0 | 0,75 | 1,1 | 0,2 | 1,3 | |
Быстрорежущая сталь | 82,5 | 0,95 | 0,80 | 1,1 | 0 | 1,1 | |
Обработка серого чугуна, НВ 190 | |||||||
Твердый сплав | 54,5 | 0,9 | 0,74 | 1,0 | 0 | 1,0 | |
Быстрорежущая сталь | 50,0 | 0,9 | 0,72 | 1,14 | 0 | 1,14 | |
Обработка ковкого чугуна, НВ 150 | |||||||
Твердый сплав | 491 | 1,0 | 0,75 | 1,1 | 0,2 | 1,3 | |
Быстрорежущая сталь | 50 | 0,95 | 0,80 | 1,1 | 0 | 1,1 | |
Обработка жаропрочной стали 12Х18Н9Т в состоянии поставки, НВ 141 | |||||||
Твердый сплав | 218 | 0,92 | 0,78 | 1,0 | 0 | 1,15 |
Примечание.
1. Главную составляющую силы резания Рz при фрезеровании алюминиевых сплавов рассчитывать как для стали, с введением коэффициента 0,25.
2. Главная составляющая силы резания Рz , рассчитанная по табличным данным, соответствует работе фрезой без затупления. При затуплении фрезы до допускаемой величины износа главная составляющая силы резания возрастает: при обработке мягкой стали (sв < 600 МПа) в 1,75...1,9 раза ; во всех остальных случаях - в 1,3...1,4 раза.
Таблица 17
Поправочный коэффициент К m р зависимости силы резания от качества обрабатываемого материала для обработки стали и чугуна,
Обрабатываемый материал | Расчетная формула | Показатель степени np при определении окружной силы резания |
Конструкционная углеродистая и легированная сталь : sв £ 600 МПа sв > 600 МПа | Кmр = ( sв/750 )np | 0,3 / 0,3 0,3 / 0,3 |
Серый чугун | Кmр = ( НВ/190 )np | 1,0 / 0,55 |
Ковкий чугун | Кmр = ( НВ/150 )np | 1,0 / 0,55 |
Примечание. В числителе приведены значения показателя степени np для
твердого сплава, в знаменателе - для быстрорежущей стали.
Таблица 18
Поправочный коэффициент К vр зависимости главной составляющей
Таблица 19
Поправочные коэффициенты К g р и К j р зависимости силы резания
Таблица 20
Таблица 21
Таблица 22
Таблица 24
Таблица 23
Таблица 25
Обработанной поверхности
(Класс шероховатости) | Параметры шероховатости, мкм | Базовая длина l, мкм | |
Ra | Rz | ||
- - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | - 100 80; 63; 50; 40 40; 32; 25; 20 20; 16; 12,5; 10 10; 8,0; 6,3; 5,0 5,0; 4,0; 3,2; 2,5 2,5; 2,0; 1,6; 1,25 1,25; 1,00; 0,80; 0,63 0,63; 0,50; 0,40; 0,32 0,32; 0,35; 0,20; 0,16 0,16; 0,125; 0,10; 0,08 0,08; 0,063; 0,05; 0,04 0,04; 0,032; 0,025; 0,020 0,02; 0,016; 0,012; 0,010 0,01; 0,008 | 1600;1250;1000;800 630; 500; 400 320; 250; 200; 160 160; 125; 100; 80 80; 63; 50; 40 40; 32; 25; 20 20; 16; 12,5; 10,0 10; 8; 6,3 6,3; 5,0; 4,0; 3,2 3,2; 2,5; 2,0; 1,60 1,6; 1,25; 1,0; 0,80 0,80; 0,63; 0,50; 0,40 0,40; 0,32; 0,20 0,20; 0,16; 0,125; 0,100 0,10; 0,08; 0,063; 0,050 0,05; 0,04; 0,032; 0,025 | 25 25 8 8 8 2,5 2,5 0,8 0,8 0,8 0,025 0,025 0,025 0,025 0,08 0,08 |
Примечание : 1. Параметр Ra является предпочтительным
2. Предпочтительные значения параметров подчеркнуты
Таблица 26
Варианты заданий по расчёту режима резания
РАСЧЕТ РЕЖИМОВ РЕЗАНИЯ
ПРИ ФРЕЗЕРОВАНИИ
Часть I Торцовое фрезерование.
Методические рекомендации
План 2000, п.
Подписало в печать "__"______2000 г. Объем п.л. Тираж 100 экз.
Формат Заказ Цена - на халяву - руб.
------------------------------------------------------------------------------------------
Ротапринт Московского государственного агроинженерного
университета имени В.П. Горячкина
12755О, Москва, И-55О, Тимирязевская ул., 58
Подрисуночные подписи
Рис. 1. Элементы движений в процессе резания при периферийном фрезеровании.
1 - направление скорости результирующего движения резания; 2 - направление скорости главного движения резания; 3 - рабочая плоскость Рs; 4 - рассматриваемая точка режущей кромки; 5 - направление скорости движения подачи.
Рис. 2. Схема встречного и попутного фрезерования.
1 - обрабатываемая заготовка; 2 - стол станка; аmax - наибольшая толщина срезаемого слоя; Sz - подача на зуб фрезы; Рг, Рв - силы, действующие на заготовку; t - глубина резания.
Рис. 3. Геометрические элементы цилиндрической фрезы.
1 - передняя поверхность лезвия Аγ; 2 - главная режущая кромка К; 3 - вспомогательная режущая кромка К'; 4 - главная задняя поверхность лезвия Аα; 5 - вспомогательная задняя поверхность лезвия А'α; 6 - вершина лезвия; 7 - корпус фрезы; 8 - зуб фрезы; 9 - спинка зуба; 10 - фаска; D - диаметр, L - длина фрезы; γ, α - передний и задний углы в главной секущей плоскости; γН - передний угол в нормальной секущей плоскости; ω - угол наклона зуба.
Рис. 4. Координатные плоскости в статической системе координат при периферийном фрезеровании.
Рvc - основная плоскость, Рnc - плоскость резания, Рτ - главная секущая плоскость, РН - нормальная секущая плоскость.
Рис. 5. Геометрические элементы торцовой фрезы.
φ, φп, φ1 - углы в плане главный, переходной режущей кромки и вспомогательный, DS - движение подачи, Sz - подача на зуб, t - глубина резания, а - толщина срезаемого слоя одним зубом, f - величина переходной режущей кромки.
1.3. Схемы фрезерования и обрабатываемые поверхности.
Рис. 6. Схема обработки поверхностей заготовок на горизонтально и вертикально-фрезерных станках.
Рис. 7. Углы торцовой фрезы со вставными зубьями.
Рис. 8. Схемы торцового фрезерования.
а - симметричное неполное; б - несимметричное встречное; в - несимметричное попутное.
Рис. 9. Элементы режима резания при фрезеровании.
1 - заготовка, 2 - фреза цилиндрическая, 3 - фреза торцовая, t - глубина резания, DSпр - движение продольной подачи, Dr - главное движение резания, B - ширина фрезерования.
МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА И ПРОДОВОЛЬСТВИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
ДЕПАРТАМЕНТ КАДРОВОЙ ПОЛИТИКИ И ОБРАЗОВАНИЯ
Московский государственный агроинженерный университет
имени В.П. Горячкина
Баграмов Л.Г. Колокатов А.М.
РАСЧЕТ РЕЖИМОВ РЕЗАНИЯ
ПРИ ФРЕЗЕРОВАНИИ
Методические рекомендации
Часть I - торцовое фрезерование
МОСКВА 2000
УДК 631
Расчет режимов резания при торцовом фрезеровании.
Методические рекомендации.
Составители: Л.Г. Баграмов, А.М. Колокатов - МГАУ, 2000. - ХХ с.
В части I методических указаний даны общие теоретические сведения о фрезеровании, изложена последовательность операций по расчёту режима резания при торцовом фрезеровании на основе справочных данных. Методические указания могут быть использованы при выполнении домашнего задания, в курсовом и дипломном проектировании студентами факультетов ТС в АПК, ПРИМА и Инженерно-педагогического, а также при проведении практических и научно-исследовательских работ.
Рис.9, табл.ХХ, список библ. - ХХ наименований.
Рецензент: Бочаров Н.И. (МГАУ)
Ó Московский государственный агроинженерный
университет имени В.П. Горячкина. 2000.
ОБЩИЕ СВЕДЕНИЯ
Элементы теории резания
Фрезерование является одним из наиболее распространённых и высокопроизводительных способов механической обработки резанием. Обработка производится многолезвийным инструментом - фрезой.
При фрезеровании главное движение резания Dr - вращение инструмента, движение подачи DS - перемещение заготовки (Рис. 1.), на карусельно - фрезерных и барабанно-фрезерных станках движение подачи может осуществляться вращением заготовки вокруг оси вращающегося барабана или стола, в отдельных случаях движение подачи может осуществляться перемещением инструмента (копировальное фрезерование).
Фрезерованием обрабатываются горизонтальные, вертикальные, наклонные плоскости, фасонные поверхности, уступы и пазы различного профиля. Особенностью процесса резания при фрезеровании является то, что зубья фрезы не находятся в контакте с обрабатываемой поверхностью всё время. Каждое лезвие фрезы последовательно вступает в процесс резания, изменяя толщину срезаемого слоя от наибольшей к наименьшей, или наоборот. Одновременно в процессе резания могут находиться несколько режущих кромок. Это вызывает ударные нагрузки, неравномерность протекания процесса, вибрации и повышенный износ инструмента, повышенные нагрузки на станок.
При обработке цилиндрическими фрезами (режущие кромки расположены на цилиндрической поверхности) рассматривается два способа обработки (Рис. 2.) в зависимости от направления движения подачи заготовки:
- встречное фрезерование, когда направление движения режущей кромки фрезы, находящейся в процессе резания, противоположно направлению движения подачи;
- попутное фрезерование, когда направление движения режущей кромки фрезы, находящейся в процессе резания, совпадает с направлением движения подачи.
При встречном фрезеровании нагрузка на зуб возрастает от нуля до максимума, силы, действующие на заготовку, стремятся оторвать её от стола, а стол поднять. Это увеличивает зазоры в системе СПИД (станок - приспособление - инструмент - деталь), вызывает вибрации, ухудшает качество обработанной поверхности. Этот способ хорошо применим для обработки заготовок с коркой, производя резание из-под корки, отрывая её, тем самым значительно облегчая резание. Недостатком такого способа является большое скольжение лезвия по предварительно обработанной и наклёпанной поверхности. При наличии некоторого округления режущей кромки она не сразу вступает в процесс резания, а поначалу проскальзывает, вызывая большое трение и износ инструмента по задней поверхности. Чем меньше толщина срезаемого слоя, тем больше относительная величина проскальзывания, тем большая часть мощности резания расходуется на вредное трение.
При попутном фрезеровании этого недостатка нет, но зуб начинает работу с наибольшей толщины срезаемого слоя, что вызывает большие ударные нагрузки, однако исключает начальное проскальзывание зуба, уменьшает износ фрезы и шероховатость поверхности. Силы, действующие на заготовку, прижимают её к столу, а стол - к направляющим станины, что уменьшает вибрации и повышает точность обработки.
Конструкция фрез.
Инструментом при фрезеровании являются фрезы (от французского la frais - клубника), представляющие собой многолезвийный инструмент, лезвия которого расположены последовательно в направлении главного движения резания, предназначенные для обработки с вращательным главным движением резания без изменения радиуса траектории этого движения и хотя бы с одним движением подачи, направление которого не совпадает с осью вращения.
Фрезы бывают:
по форме - дисковые, цилиндрические, конические;
по конструкции - цельные, составные, сборные и насадные, хвостовые;
по применяемому материалу режущей кромки - быстрорежущие и твердосплавные;
по расположению лезвий - периферийные, торцовые и периферийно-торцовые;
по направлению вращения - праворежущие и леворежущие;
по форме режущей кромки - профильные (фасонные и обкаточные), прямозубые, косозубые, с винтовым зубом;
по форме задней поверхности зуба - затылованные и незатылованные,
по назначению - концевые, угловые, прорезные, шпоночные, фасонные, резьбовые, модульные и др.
Рассмотрим элементы и геометрию фрезы на примере цилиндрической фрезы с винтовыми зубьями (Рис. 3.).
У фрезы различают переднюю поверхность лезвия Аγ, главную режущую кромку К, вспомогательную режущую кромку К', главную заднюю поверхность лезвия Аα, вспомогательную заднюю поверхность лезвия А'α, вершину лезвия, корпус фрезы, зуб фрезы, спинку зуба, фаску.
В координатных плоскостях статической системы координат (Рис. 4.) рассматриваются геометрические параметры фрезы, среди которых γ, α - передний и задний углы в главной секущей плоскости, γН - передний угол в нормальной секущей плоскости, ω - угол наклона зуба.
Передний угол γ облегчает образование и сход стружки, главный задний угол α способствует уменьшению трения задней поверхности по обработанной поверхности заготовки. У незатылованных зубьев передний угол выполняется в пределах γ = 10о...30о, задний угол α = 10о...15о в зависимости от обрабатываемого материала.
У затылованного зуба задняя поверхность выполняется по спирали Архимеда, что обеспечивает ему постоянство профиля сечения при всех переточках инструмента. Затылованный зуб перетачивается только по передней поверхности и выполняется, ввиду сложности, только у профильного инструмента (фасонного и обкаточного), т.е. форма режущей кромки которого определена формой обработанной поверхности. Передний угол затылованных зубьев выполняется, как правило, равным нулю, задний угол имеет значения α = 8о...12о.
Угол наклона зубьев ω обеспечивает более плавное вхождение лезвия в процесс резания по сравнению с прямыми зубьями и придаёт определённое направление сходу стружки.
Зуб торцовой фрезы имеет режущее лезвие более сложной формы. Режущая кромка состоит (Рис. 5.) из главной, переходной и вспомогательной, имеющие главный угол в плане φ, угол в плане переходной режущей кромки φп и вспомогательный угол в плане φ1. Геометрические параметры фрезы рассматриваются в статической системе координат. Углы в плане это углы в основной плоскости Рvc. Главный угол в плане φ - это угол между рабочей плоскостью РSc и плоскостью резания Рnc Величина главного угла в плане определяется исходя из условий резания как у токарного резца, при φ=0˚ режущая кромка становится только торцовой, а при φ=90˚ она становится периферийной. Вспомогательный угол в плане φ1 - это угол между рабочей плоскостью РSc и вспомогательной плоскостью резания Р'nc, он составляет 5о...10о, а угол в плане переходной режущей кромки - половину от главного угла в плане. Переходное режущее лезвие повышает прочность зуба.
Износ фрез определяется, так же как и при точении, величиной износа по задней поверхности. Для быстрорежущей фрезы допустимая ширина изношенной ленточки по задней поверхности составляет при черновой обработке сталей 0,4...0,6 мм, чугунов - 0,5...0,8 мм, при получистовой обработке сталей 0,15...0,25 мм, чугунов - 0,2...0,3 мм. Для твёрдосплавной фрезы допустимый износ по задней поверхности составляет 0,5...0,8 мм. Стойкость цилиндрической быстрорежущей фрезы составляет Т = 30...320 мин, в зависимости от условий обработки, в некоторых случаях достигает 600 мин, стойкость твёрдосплавной фрезы Т= 90...500 мин.
Различают три вида фрезерования - периферийное, торцовое и периферийно - торцовое. К основным плоскостям и поверхностям, обрабатываемым на консольных фрезерных станках (Рис. 6.), относятся:
горизонтальные плоскости; вертикальные плоскости; наклонные плоскости и скосы; комбинированные поверхности; уступы и прямоугольные пазы; фасонные и угловые пазы; пазы типа "ласточкин хвост"; закрытые и открытые шпоночные пазы; пазы под сегментные шпонки; фасонные поверхности; цилиндрические зубчатые колёса методом копирования.
Горизонтальные плоскости обрабатываются цилиндрическими (Рис. 6. а) на горизонтально-фрезерных станках и торцовыми (Рис. 6. б) на вертикально-фрезерных станках фрезами. Поскольку у торцовой фрезы одновременно участвует в резании большее количество зубьев, обработка ими более предпочтительна. Цилиндрическими фрезами обрабатываются, как правило, плоскости шириной до 120 мм.
Вертикальные плоскости обрабатывают торцовыми фрезами на горизонтальных станках и концевыми - на вертикальных (Рис. 6. в, г).
Наклонные плоскости обрабатывают торцовыми и концевыми фрезами на вертикальных станках с поворотом оси шпинделя (Рис. 6. д, е), и на горизонтальных станка угловыми фрезами (Рис. 6. ж).
Комбинированные поверхности обрабатывают набором фрез на горизонтальных станках (Рис. 6. з).
Уступы и прямоугольные пазы обрабатывают дисковыми (на горизонтальных) и концевыми (на вертикальных) фрезами (Рис. 6. и, к), при этом концевые фрезы допускают большие скорости резания, так как одновременно участвует в работе большее количество зубьев. При обработке пазов дисковые фрезы предпочтительнее.
Фасонные и угловые пазы обрабатываются на горизонтальных станках фасонными, одно- и двухугловыми фрезами (рис. 6. л, м).
Паз типа "ласточкин хвост" и Т-образные пазы обрабатываются на вертикально-фрезерных станках, как правило, за два прохода, сначала концевой фрезой (или на горизонтально-фрезерном станке дисковой фрезой) обрабатывается прямоугольный паз по ширине верхней части. После этого окончательно паз обрабатывается концевой одноугловой и специальной Т-образной (Рис. 6. н, о) фрезой.
Закрытые шпоночные пазы обрабатываются концевыми фрезами, а открытые - шпоночными на вертикальных станках (Рис. 6. п, р).
Пазы для сегментных шпонок обрабатываются на горизонтально-фрезерных станках дисковыми фрезами (Рис. 6. с).
Фасонные поверхности незамкнутого контура с криволинейной образующей и прямолинейной направляющей обрабатываются на горизонтальных и вертикальных станках фасонными фрезами (Рис. 6. т).
Торцовое фрезерование - наиболее распространенный и производительный способ обработки плоских поверхностей деталей в условиях серийного и массового производства.
ТОРЦОВОЕ ФРЕЗЕРОВАНИЕ.
Дата: 2019-07-30, просмотров: 282.