Расчет направляющих башмаков
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Для центрирования относительно направляющих кабин (противовесов) и неизменности расстояний между подвижными и неподвижными частями лифта на несущих каркасах устанавливаются башмаки. С каждой стороны кабины (противовеса) устанавливается по два башмака, в верхней и нижней ее части.

Конструкция башмаков охватывает головку направляющей с трех сторон, так, чтобы обеспечить действие нормальных сил, уравновешивающих опрокидывающие моменты, вызванные эксцентриситетом положения центра масс груза, кабины и смещением центра подвески.

Принимаем направляющие башмаки скользящей конструкции.

Площадь поверхности вкладыша определяем в зависимости от допустимого контактного напряжения материала:

- для боковой поверхности

 

,                          (2.10)

 

где  – расчетная нагрузка на башмак в поперечном направлении (рис. 2.5);

 – допустимое напряжение смятия материала вкладыша из капрона.

- для торцевой поверхности

 

,                          (2.11)

 

где Nн – расчетная нагрузка на башмак в торцевом направлении (см. рис. 2.5);

Силы нормального давления, действующие на башмаки в плоскости направляющих и в перпендикулярном к ним направлении, определим из уравнений равновесия кабины:

 

∑Мх = 0, ∑Мy = 0            (2.12)

 


Рис. 2.5. Схемы к расчету опорных реакций башмаков кабины:

а) схема горизонтальной проекции кабины;

б) схема вертикальной проекции кабины.

 

На рис. приняты следующие обозначения: А, В - ширина и глубина кабины, м; h - расстояние между башмаками по вертикали, м; П - обозначение точка подвески кабины; Хп, Yп - продольное и поперечное смещение точки подвески кабины относительно центра пола, м; S - натяжение тяговых канатов, кН; К - положение центра масс кабины; Г - положение центра масс расчетного груза; Хв, Yв - продольное и поперечное смещение центра масс кабины относительно центра пола, м; Хг, Yг - продольное и поперечное смещение центра масс расчетного груза, м; Nп, Nн - нормальные реакции в зоне контакта башмаков с направляющими, которые действуют перпендикулярно и параллельно плоскости направляющих; Рк, Рг - сила тяжести кабины и груза, соответственно, кН.

Из уравнений равновесия определяем соответствующие нормальные реакции


,                                         (2.13)

 

,                                   (2.14)

 

где Рг = Qр·10-2 – величина силы тяжести массы расчетного груза, кН (для пассажирского лифта Qр=0,5·Qс, где Qс – грузоподъемность из условия свободного заполнения кабины);

Рксила тяжести массы кабины, кН;

Хп, Yп – координаты смещения точки подвески кабины, принимаются по конструктивным соображениям от 0,03 до 0,1 м;

Хк, Yк – величина продольного и поперечного смещения центра масс кабины, зависящая от конструкции дверей кабины, может приниматься в пределах от 0,02 до 0,1 м;

Хг,=В/6, Yг=А/6 - определяются в предположении, что расчетный груз равномерно распределен по треугольной площадке, составляющей 50 % площади пола кабины, отделенной диагональю прямоугольного контура.

 

 

 

 


 




Расчет направляющих

 

Направляющими называются неподвижно установленные в шахте стальные рельсы, расположенные по боковым сторонам кабины (противовеса), которые гарантируют прямолинейное движение без поперечного раскачивания и обеспечивают постоянство безопасных зазоров между подвижными и неподвижными частями оборудования в шахте лифта.

В аварийных режимах посадки на ловители направляющие служат прочной основой для плавного торможения и надежного удержания кабины (противовеса) до момента снятия с ловителей. Возникающие при этом значительные динамические нагрузки непосредственно воспринимаются направляющими и устройствами их крепления в шахте.

В нормальных рабочих режимах направляющие воспринимают силы нормального давления башмаков, которые обусловлены смещением центра масс груза и кабины относительно канатной подвески или процессом загрузки кабины средствами напольного транспорта.

От прочности, жесткости и точности установки направляющих зависит надежность и безопасность работы лифта. В связи с этим раздел 5.3 ПУБЭЛ предъявляет ряд специальных требований к конструкции направляющих [4].

Прочностной расчет направляющих производится с учетом нагрузок действующих в рабочем режиме и при посадке на ловители (рис. 2.6).

Примем следующие обозначения:

l, lр – величина пролета крепления направляющей и ее расчетный пролет;

е – эксцентриситет приложения продольной силы R относительно центра тяжести сечения направляющей;

Nн, Nп – нагрузка, действующая в плоскости направляющих и перпендикулярном к ней направлении;

R – расчетная величина тормозной силы ловителя;

Мн, Мп, МR – изгибающие моменты в опасном сечении направляющей.

 

Рис. 2.6. Расчетные схемы направляющих

а) многоопорная балка; б) двухопорная балка

 

Направляющая рассматривается как неразрезная многопролетная балка, загруженная в одном пролете поперечными, нормальными силами и продольной тормозной силой при посадке кабины (противовеса) на ловители.

Методика расчета направляющих противовеса особой специфики не имеет. В связи с этим, более детально рассмотрим расчет направляющей кабины.

1. Предварительно определяем параметры профиля и шаг крепления направляющей (п. 7.1; табл. 7.1 [1]).

Геометрические характеристики профиля (рис. 2.7 а):

– Обозначение профиля НТ-3;

– Размеры поперечного сечения профиля:

H=60 мм;

h=35 мм;

B=90 мм;

b=16 мм.

– Масса 1 м 11,8 кг;

– Шаг крепления принимаем равным 2 м.

 

Рис. 2.7. Направляющая таврового профиля

а) схема поперечного сечения; б) расчетная схема

 

2. Рассчитываем величины моментов инерции и моментов сопротивления поперечного сечения направляющей (рис. 2.7 б).

Площадь поперечного сечения брутто


                                                                (2.15)

 

 

Площадь поперечного сечения нетто (учет ослабления отверстиями)

 

        (2.16)

 

 

Координаты центра тяжести сечения брутто

 

                                          (2.17)

Xсб=0

 

 

Координаты центра тяжести сечения нетто

 

                            (2.18)

 

Xсн = 0

 

где Y1, Y2, Y3,Y4 – координаты центра элементарных площадок поперечного сечения относительно любой выбранной точки горизонтальной оси сечения;


h1=35 мм;

h2=17 мм;

h3=8 мм;

h4=8 мм;

b1=16 мм;

b2=8 мм;

b3=90 мм;

b4=8 мм;

Y1=42,5 мм;

Y2=16,5 мм;

Y3=4 мм;

Y4=4 мм;

F1=560 мм2;

F2=136 мм2;

F3=720 мм2;

F4=64 мм2.

 

Моменты инерции сечения брутто

 

   (2.19)

 

 

                   (2.20)


 

Моменты инерции нетто

 

                                          (2.21)

 

 

      (2.22)

 

 

Минимальная величина радиуса инерции брутто

 

                      (2.23)

 

=28,2 мм

 

Моменты сопротивления брутто при изгибе в плоскости направляющих:

– для верхней точки сечения


                     (2.24)

 

 

– для нижней точки сечения

 

                      (2.25)

 

 

Момент сопротивления брутто при изгибе в плоскости перпендикулярной плоскости направляющих:

– для крайней точки основания сечения направляющих

 

                      (2.26)

 

 

– для точки на боковой поверхности головки направляющей

 

                      (2.27)


 

Момент сопротивления нетто при изгибе в плоскости направляющих:

– в верхней точке сечения

 

                      (2.28)

 

 

– в нижней точке сечения

 

                      (2.29)

 

 

Момент сопротивления нетто при изгибе в плоскости перпендикулярной плоскости направляющих:

– в крайней точке основания сечения направляющей

 

                      (2.30)

 


– в точке боковой поверхности головки

 

                      (2.31)

 

 

3. Производим расчет направляющей в рабочем режиме работы лифта с 10 % перегрузкой кабины (см. рис. 2.6 а, б).

Предполагается, что в центре пролета направляющей действуют расчетная, нормальная сила Nн в плоскости направляющих и нормальная сила Nп перпендикулярная плоскости направляющих. Нормальные силы определяются рассмотренным выше методом при смещении центра масс груза в поперечном и продольном направлениях на величину А/6 и В/6, соответственно.

Пролет реальной многопролетной балки заменяется расчетным эквивалентным, учитывающим влияние жесткости соседних пролетов, путем сокращения его длины до величины

 

                             (2.32)

 

 

В среднем сечении пролета во взаимно перпендикулярных направлениях действуют изгибающие моменты от поперечных сил:

– в плоскости направляющих


                      (2.33)

 

 

– в плоскости, перпендикулярной плоскости направляющих

 

                      (2.34)

 

 

Наибольшее расчетное нормальное напряжение определяется геометрическим сложением нормальных напряжений, действующих в двух плоскостях изгиба

 

     (2.35)

 

 

где Wн, Wп – минимальные значения величины момента сопротивления сечения направляющей соответствующих плоскостях изгиба.

Коэффициент запаса прочности определяется по отношению к пределу текучести материала направляющей (для Ст. 20 ГОСТ 1050-74 =245 МПа=2450000 Н/м2)


, (2.36)

 

где [nэ] – допускаемый запас прочности в рабочем режиме.

4. Проверка жесткости направляющей.

Прогиб в плоскости направляющих

 

,

 

где Е=2,17·107 Н/см2

 

 

Прогиб направляющей не должен превышать величины

Условие выполняется, следовательно, направляющая подобрана верно.











Спецчасть

Расчет и подбор каната

 

Канаты подъёмных механизмов лифтов обеспечивают передачу движения от лебедки к кабине и противовесу с небольшими потерями мощности на канатоведущем органе и отклоняющих блоках [2, 3].

Канаты воспринимают растягивающие нагрузки при движении и неподвижном состоянии кабины, в нормальных эксплуатационных и аварийных режимах.

От надежности работы системы подвески подвижных частей лифта зависит жизнь пассажиров. Поэтому к стальным канатам и тяговым цепям лифтов предъявляются повышенные требования прочности и долговечности. Эти требования нашли отражения в ПУБЭЛ Госгортехнадзора [4].

Канаты, поступающие на монтаж лифтового оборудования должны иметь документ (сертификат), характеризующий их качество и оформленный в полном соответствии с требованиями государственных стандартов. Аналогичные требования предъявляются к тяговым цепям.

Параллельно работающие канаты подвески кабин (противовесов) должны иметь одинаковые диаметры, структурные и прочностные характеристики.

Не допускается сращивание тяговых канатов механизмов подъема и ограничителей скорости.

Номинальный диаметр тяговых канатов лифтов для перевозки людей должен быть не менее 8 мм, а в ограничителях скорости и лифтах, не рассчитанных на транспортировку людей, – не менее 6 мм.

Число параллельных ветвей канатов подвески кабины (противовеса) должно быть не менее указанных в таблице 4 ПУБЭЛ [4].

В лифтах применяются только канаты двойной свивки, которые свиваются из прядей проволок относительно центрального сердечника в виде пенькового каната, пропитанного канатной смазкой.

Обычно стальной канат состоит из 6 прядей и сердечника.

Условия работы канатов в лифтах с КВШ отличаются наличием изгибающих, растягивающих, скручивающих и сдвигающих нагрузок, поэтому очень важно иметь большую поверхность касания проволочек в отдельных слоях. Этому требованию в наибольшей степени отвечают канаты типа ЛК с линейчатым касанием между проволоками.

В зависимости от структуры поперечного сечения прядей различают канаты ЛК-О – при одинаковых диаметрах проволок по слоям навивки, ЛК-Р с различным диаметром проволок. Канаты с точечным касанием проволок имеют обозначение ТК.

В обозначении конструкции каната учитывается характер касания проволок, количество прядей и число проволок в каждой пряди: ЛК-О 6x19 или ТК 6x37.

При использовании канатов важно обеспечить не только достаточную их прочность, но и надежное соединение с элементами конструкции лифта.

Стальные канаты должны рассчитываться на статическое разрывное усилие

 

,                            (3.1)

 

где Р – разрывное усилие каната, принимаемое по таблицам ГОСТ или результатам испытания каната на разрыв, кН;

К – коэффициент запаса, принимаемый по таблице 6 ПУБЭЛ в зависимости от типа канатоведущего органа, назначения и скорости кабины лифта [4];

S – расчетное статическое натяжение ветви каната, кН

Величина расчетного натяжения ветви канатной подвески должна определяться по следующим зависимостям:

для канатов подвески кабины.

 

(3.2)

 

для канатов подвески противовеса

 

, (3.3)

 

где Q – грузоподъемность лифта, кг;

QК – масса кабины, кг;

QП – масса противовеса, кг;

QТК – масса тяговых канатов от точки схода с КВШ до подвески, кг;

QН – масса натяжного устройства уравновешивающих канатов, кг;

m – число параллельных ветвей канатов;

g=9,8 м/с2 – ускорение свободного падения.

Канат подвешивается в соответствии с правилами ПУБЭЛ [4]. Лифт с канатоведущим шкивом, в котором допускается транспортировка людей должен быть подвешен не менее чем на трех канатах. По рекомендации [1] лифты от 500 до 1000 кг подвешиваются на 3-6 отдельных канатах.

Выбираем 3 отдельные ветви канатов, на которых подвешивается кабина и противовес.

Масса тяговых канатов определяется по формуле

 

          (3.4)

 


где  – приближенное значение массы 1 метра тягового каната, кг/м (принимается 0,4-0,5 кг/м);

– расчетная высота подъема кабины, м.

 

 

 

 

 

По расчетному значению разрывной нагрузки Р и таблицам ГОСТ определяется необходимый диаметр каната, так, чтобы табличное значение разрывной нагрузки было равно или больше расчетной величины.

Выбираем канат типа ЛК-Р ГОСТ 2680-80 [12] с одним органическим сердечником со следующими параметрами:

– Диаметр каната d=9,1 мм;

– Расчетная площадь сечения всех проволок F=31,18 см2;

– Масса 1000 м смазанного каната 305 кг

– Маркировочная группа по временному сопротивлению разрыву 1860 МПа;

– Расчетное разрывное усилие:

s суммарное всех проволок в канате 58050 Н;

s каната в целом 47500 Н;

После выбора типа и определения диаметра каната производим проверку фактической величины коэффициента запаса прочности каната подвески кабины или противовеса [3]


,

 

где РТ – табличное значение разрывной нагрузки выбранного каната, кН;

 – фактическое значение массы каната от точки схода с КВШ до подвески кабины (противовеса), кг;

 – фактическое значение массы 1 метра выбранного тягового каната, кг/м;

 

,

 

где Н – расчетная высота подъема кабины лифта, м

 

 

 

Правильному выбору каната должно соответствовать условие

 

                              (3.5)

13 ≥ 12

 

Условие прочности 3.5 выполняется.





Дата: 2019-07-30, просмотров: 224.