В соответствии с принципом суперпозиции электрическое поле в диэлектрике векторно складывается из внешнего поля и поля поляризационных зарядов (рис.3.11).
или по абсолютной величине
Мы видим, что величина напряженности поля в диэлектрике меньше, чем вакууме. Другими словами, любой диэлектрик ослабляет внешнее электрическое поле.
Рис.3.11. Электрическое поле в диэлектрике.
Индукция электрического поля , где , , то есть . С другой стороны, , откуда находим, что ε0Е0 = ε0εЕ и, следовательно, напряженность электрического поля в изотропном диэлектрике есть:
Эта формула раскрывает физический смысл диэлектрической проницаемости и показывает, что напряженность электрического поля в диэлектрике в раз меньше, чем в вакууме. Отсюда следует простое правило: чтобы написать формулы электростатики в диэлектрике, надо в соответствующих формулах электростатики вакуума рядом с приписать .
В частности, закон Кулона в скалярной форме запишется в виде:
14. Электрическая емкость. Конденсаторы (плоский, сферический, цилиндрический), их емкости.
Конденсатор состоит из двух проводников (обкладок), которые разделены диэлектриком. На емкость конденсатора не должны влиять окружающие тела, поэтому проводникам придают такую форму, чтобы поле, которое создавается накапливаемыми зарядами, было сосредоточено в узком зазоре между обкладками конденсатора. Этому условию удовлетворяют: 1) две плоские пластины; 2) две концентрические сферы; 3) два коаксиальных цилиндра. Поэтому в зависимости от формы обкладок конденсаторы делятся на плоские, сферические и цилиндрические.
Так как поле сосредоточено внутри конденсатора, то линии напряженности начинаются на одной обкладке и кончаются на другой, поэтому свободные заряды, которые возникают на разных обкладках, равны по модулю и противоположны по знаку. Под емкостьюконденсатора понимается физическая величина, равная отношению заряда Q, накопленного в конденсаторе, к разности потенциалов (φ1 — φ2) между его обкладками:
(1)
Найдем емкость плоского конденсатора, который состоит из двух параллельных металлических пластин площадью S каждая, расположенных на расстоянии d друг от друга и имеющих заряды +Q и –Q. Если считать, что расстояние между пластинами мало по сравнению с их линейными размерами, то краевыми эффектами на пластинах можно пренебречь и поле между обкладками считать однородным. Его можно найти используя формулу потенциала поля двух бесконечных параллельных разноименно заряженных плоскостей φ1-φ2=σd/ε0. Учитывая наличие диэлектрика между обкладками:
(2)
где ε — диэлектрическая проницаемость. Тогда из формулы (1), заменяя Q=σS, с учетом (2) найдем выражение для емкости плоского конденсатора:
(3)
Для определения емкости цилиндрического конденсатора, который состоит из двух полых коаксиальных цилиндров с радиусами r1 и r2(r2 > r1), один вставлен в другой, опять пренебрегая краевыми эффектами, считаем поле радиально-симметричным и действующим только между цилиндрическими обкладками. Разность потенциалов между обкладками считаем по формуле для разности потенциалов поля равномерно заряженного бесконечного цилиндра с линейной плотностью τ =Q/l (l—длина обкладок). При наличии диэлектрика между обкладками разность потенциалов
(4)
Подставив (4) в (1), найдем выражение для емкости цилиндрического конденсатора:
(5)
Чтобы найти емкость сферического конденсатора, который состоит из двух концентрических обкладок, разделенных сферическим слоем диэлектрика, используем формулу для разности потенциалов между двумя точками, лежащими на расстояниях r1 и r2 (r2 > r1) от центра заряженной сферической поверхности. При наличии диэлектрика между обкладками разность потенциалов
(6)
Подставив (6) в (1), получим
Электрическая ёмкость — характеристика проводника, мера его способности накапливать электрический заряд. В теории электрических цепей ёмкостью называют взаимную ёмкость между двумя проводниками; параметр ёмкостного элемента электрической схемы, представленного в виде двухполюсника. Такая ёмкость определяется как отношение величины электрического заряда к разности потенциалов между этими проводниками.
В системе СИ ёмкость измеряется в фарадах. В системе СГС в сантиметрах.
Для одиночного проводника ёмкость равна отношению заряда проводника к его потенциалу в предположении, что все другие проводники бесконечно удалены и что потенциал бесконечно удалённой точки принят равным нулю. В математической форме данное определение имеет вид
где — заряд, — потенциал проводника.
Ёмкость определяется геометрическими размерами и формой проводника и электрическими свойствами окружающей среды (её диэлектрической проницаемостью) и не зависит от материала проводника. К примеру, ёмкость проводящего шара радиуса Rравна (в системе СИ):
где ε0 — электрическая постоянная, ε — относительная диэлектрическая проницаемость.
Понятие ёмкости также относится к системе проводников, в частности, к системе двух проводников, разделённых диэлектриком иливакуумом, — к конденсатору. В этом случае взаимная ёмкость этих проводников (обкладок конденсатора) будет равна отношению заряда, накопленного конденсатором, к разности потенциалов между обкладками. Для плоского конденсатора ёмкость равна:
где S — площадь одной обкладки (подразумевается, что они равны), d — расстояние между обкладками, ε — относительная диэлектрическая проницаемость среды между обкладками, ε0 = 8.854·10−12 Ф/м — электрическая постоянная.
Конденса́тор (от лат. condensare — «уплотнять», «сгущать») — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.
15. Соединение конденсаторов (параллельное и последовательное)
Помимо показанного на рис. 60 и 61, а также на рис. 62, а параллельного соединения конденсаторов, при котором соединены между собой все положительные и все отрицательные обкладки, иногда соединяют конденсаторы последовательно, т. е. так, чтобы отрицательная обкладка
Рис. 62. Соединение конденсаторов: а) параллельное; б) последовательное
первого конденсатора была соединена с положительной обкладкой второго, отрицательная обкладка второго — с положительной обкладкой третьего и т. д. (рис. 62, б). В случае параллельного соединения все конденсаторы заряжаются до одной и той же разности потенциалов U, но заряды на них могут быть различными. Если емкости их равны С1, С2,..., Сn, то соответствующие заряды будут
Общий заряд на всех конденсаторах
и, следовательно, емкость всей системы конденсаторов
(35.1)
Итак, емкость группы параллельно соединенных конденсаторов равна сумме емкостей отдельных конденсаторов.
В случае последовательно соединенных конденсаторов (рис. 62, б) одинаковы заряды на всех конденсаторах. Действительно, если мы поместим, например, заряд +q на левую обкладку первого конденсатора, то вследствие индукции на правой его обкладке возникнет заряд —q, а на левой обкладке второго конденсатора — заряд +q. Наличие этого заряда на левой обкладке второго конденсатора опять-таки вследствие индукции создает на правой его обкладке заряд —q, а на левой обкладке третьего конденсатора — заряд +q и т. д. Таким образом, заряд каждого из последовательно соединенных конденсаторов равен q. Напряжение же на каждом из этих конденсаторов определяется емкостью соответствующего конденсатора:
где Сi — емкость одного конденсатора. Суммарное напряжение между крайними (свободными) обкладками всей группы конденсаторов
Следовательно, емкость всей системы конденсаторов
определяется выражением
(35.2)
Из этой формулы видно, что емкость группы последовательно соединенных конденсаторов всегда меньше емкости каждого из этих конденсаторов в отдельности.
16. Энергия электрического поля и её объёмная плотность.
Энергия электрического поля. Энергию заряженного конденсатора можно выразить через величины, характеризующие электрическое поле в зазоре между обкладками. Сделаем это на примере плоского конденсатора. Подстановка выражения для емкости в формулу для энергии конденсатора дает
Частное U / d равно напряженности поля в зазоре; произведение S·d представляет собой объем V, занимаемый полем. Следовательно,
Если поле однородно (что имеет место в плоском конденсаторе при расстоянии dмного меньшем, чем линейные размеры обкладок), то заключенная в нем энергия распределяется в пространстве с постоянной плотностью w. Тогда объемная плотность энергии электрического поля равна
C учетом соотношения можно записать
В изотропном диэлектрике направления векторов D и E совпадают и
Подставим выражение , получим
Первое слагаемое в этом выражении совпадает с плотностью энергии поля в вакууме. Второе слагаемое представляет собой энергию, затрачиваемую на поляризацию диэлектрика. Покажем это на примере неполярного диэлектрика. Поляризация неполярного диэлектрика заключается в том, что заряды, входящие в состав молекул, смещаются из своих положений под действием электрического поляЕ. В расчете на единицу объема диэлектрика работа, затрачиваемая на смещение зарядов qi на величину dri, составляет
Выражение в скобках есть дипольный момент единицы объема или поляризованность диэлектрика Р. Следовательно, .
Вектор P связан с вектором E соотношением . Подставив это выражение в формулу для работы, получим
Проведя интегрирование, определим работу, затрачиваемую на поляризацию единицы объема диэлектрика
.
Зная плотность энергии поля в каждой точке, можно найти энергию поля, заключенного в любом объеме V. Для этого нужно вычислить интеграл:
17. Постоянный электрический ток, его характеристики и условия существования. Закон Ома для однородного участка цепи (интегральная и дифференциальная формы)
Для существования постоянного электрического тока необходимо наличие свободных заряженных частиц и наличие источника тока. в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля.
Источник тока - устройство, в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля. В источнике тока на заряженные частицы в замкнутой цепи действуют сторонние силы. Причины возникновения сторонних сил в различных источниках тока различны. Например в аккумуляторах и гальванических элементах сторонние силы возникают благодаря протеканию химических реакций, в генераторах электростанций они возникают при движении проводника в магнитном поле, в фотоэлементах - при действия света на электроны в металлах и полупроводниках.
Электродвижущей силой источника тока называют отношение работы сторонних сил к величине положительного заряда, переносимого от отрицательного полюса источника тока к положительному.
Основные понятия.
Сила тока - скалярная физическая величина, равная отношению заряда, прошедшего через проводник, ко времени, за которое этот заряд прошел.
где I - сила тока, q - величина заряда (количество электричества), t - время прохождения заряда.
Плотность тока - векторная физическая величина, равная отношению силы тока к площади поперечного сечения проводника.
где j -плотность тока, S - площадь сечения проводника.
Направление вектора плотности тока совпадает с направлением движения положительно заряженных частиц.
Напряжение - скалярная физическая величина, равная отношению полной работе кулоновских и сторонних сил при перемещении положительного заряда на участке к значению этого заряда.
где A - полная работа сторонних и кулоновских сил, q - электрический заряд.
Электрическое сопротивление - физическая величина, характеризующая электрические свойства участка цепи.
где ρ - удельное сопротивление проводника, l - длина участка проводника, S - площадь поперечного сечения проводника.
Проводимостью называется величина, обратная сопротивлению
где G - проводимость.
Законы Ома.
Дата: 2019-07-24, просмотров: 229.