Если иррациональное неравенство содержит один радикал, то всегда можно привести его к равносильному неравенству, в котором радикал будет находиться в одной части неравенства, а все другие члены неравенства - в другой его части, то есть неравенству вида или , где и - рациональные алгебраические выражения относительно переменной . Привидение иррационального неравенства, содержащего один радикал к виду
(1)
или
(2),
называется уединением радикала.
Разобьем простейшие неравенства на две группы:
I – неравенства, содержащие радикал четной степени, т.е. .
II - неравенства, содержащие радикал нечетной степени, т.е. .
I. Рассмотрим решение неравенств вида (1). Ясно, что всякое решение этого неравенства является в то же время решением неравенства (при этом условии имеет смысл левая часть неравенства) и решением неравенства (поскольку ). Значит, неравенство
(3)
равносильно системе неравенств:
где и следствия неравенства (3). Так как в области, определяемой первыми двумя неравенствами этой системы, обе части третьего неравенства системы определены и принимают только неотрицательные значения, то их возведение в квадрат на указанном множестве есть равносильное преобразование неравенства. В результате получаем, что неравенство (3) равносильно системе неравенств:
Таким образом, мы вывели теорему о решении неравенств вида (3).
Теорема 1. Неравенство вида равносильно системе неравенств:
Аналогично для неравенств вида .
Теорема 2. Неравенство вида равносильно системе неравенств
Рассмотрим теперь неравенства вида (2), т.е.
(4)
Оно равносильно системе
(5)
Но в отличие от неравенства (3) может здесь принимать как положительные, так и отрицательные значения. Поэтому, рассмотрев систему (5) в каждом из двух случаев и , получим совокупность систем:
В первой их этих систем последнее неравенство можно опустить как следствие двух первых неравенств. Во второй системе обе части последнего неравенства можно возвести в квадрат (так как обе его части положительны).
Итак, неравенство (4) равносильно совокупности двух систем неравенств
Заметим, что второе неравенство второй системы можно опустить - оно является следствием последнего неравенства системы.
Теорема 3. Неравенство вида равносильно совокупности двух систем неравенств
Аналогично.
Теорема 4. Неравенство вида равносильно совокупности двух систем неравенств
Неравенства вида , , , являются частными случаями рассмотренных выше неравенств, когда .
Пример 1. Решим неравенство
Решение. Заданное неравенство - неравенство вида (3), поэтому по теореме 1 оно равносильно системе неравенств:
Так как квадратный трехчлен имеет отрицательный дискриминант и положительный старший коэффициент, то он положителен при всех значениях . Поэтому решения последней системы таковы: .
Ответ:
Пример 2. Решить неравенство
Решение. По теореме 3 наше неравенство эквивалентно совокупности систем неравенств
Применим метод интервалов для решения последней конструкции неравенств.
Решение первой системы:
Второй:
Получаем совокупность
Ответ: и .
Пример 3. Решить неравенство
Решение. По теореме 1 наше неравенство эквивалентно системе
Последнее неравенство системы выполняется всегда. если и .
Итак, решением неравенства является исключая .
Ответ: .
II. Рассмотрим теперь неравенства, содержащие радикал нечетной степени, т.е. . Решение также проводится также путем последовательного возведения обеих частей неравенства в соответствующую степень и преобразования его в неравенство, не содержащее радикалов. При возведении неравенства в нечетную степень эквивалентность не нарушается. Имеют место следующие эквивалентные преобразования:
При при возведении в степень знак не изменится, т.к. , . Значит при .
может быть любое, т.к. под знаком радикала нечетной степени может стоять как отрицательная, так и положительная функция.
Пример 4. Решить неравенство
Решение. Возведем в куб обе части неравенства:
или
Решим полученное неравенство методом интервалов
Ответ: .
Дата: 2019-07-24, просмотров: 319.