Определим максимальную силу , которая действует на ползун В по следующей формуле:
(2.13)
где, - Максимальное индикаторное давление,
- диаметр поршня,
Определим расстояние от оси до графика по формуле (2.14)
На планах скоростей прикладываем все силы, действующие на механизм, и указываем их плечи. Составляем сумму моментов относительно полюса и решаем уравнение.
Для 1-го положения:
(2.14)
где, плечи соответствующих сил, снятые с плана скоростей, мм.
H,
, во всех положениях
H
Находим момент привидения:
(2.15)
где, - приведённая сила, Н
- длина соответствующего звена, м
Н∙м
Для 2-го положения:
H
Н∙м
Для 3-го положения:
H
Н∙м
Для 4-го положения:
H
Н∙м
Для 5-го положения:
H
Н∙м
Для 6-го положения:
H
Н∙м
Для 7-го положения:
H
Н∙м
Для 8-го положения:
H
Н∙м
Для 9-го положения:
H
Н∙м
Для 10-го положения:
H
Н∙м
Для 11-го положения:
H
Н∙м
Для 12-го положения:
H
Н∙м
Все значения сводим в таблицу.
Таблица 2.4 – Приведённые моменты сопротивления
N положения | , | N положения | , |
1 | 8,88 | 7 | 8,88 |
2 | 650,08 | 8 | 634,72 |
3 | 180,7 | 9 | 171,81 |
4 | 681,01 | 10 | 681,01 |
5 | 1665,43 | 11 | 1674,32 |
6 | 1242,3 | 12 | 1257,69 |
Определяем масштабный коэффициент построения графика моментов сопротивления:
, (2.16)
где, - масштабный коэффициент по оси
- максимальное значение ,
- значение на графике, мм
По данным расчёта строится график .
Путём графического интегрирования графика приведённого момента строится график работ сил сопротивления .
График работ движущих сил получаем в виде прямой, соединяющей начало и конец графика работ сил сопротивления.
Масштабный коэффициент графика работ:
, (2.17)
где, Н – полюсное расстояние для графического интегрирования, мм
Н=60мм
Момент движущий является величиной постоянной и определяется графически.
Путём вычитания ординат графика из соответствующих ординат строится график изменения кинетической энергии .
(2.18)
По методу Ф. Витенбауэра на основании ранее построенных графиков и строим диаграмму энергия-масса .
Определяем углы и под которыми к диаграмме энергия-масса, проводятся касательные.
(2.19)
(2.20)
где, - коэффициент неравномерности вращения кривошипа.
Из чертежа определим
Определяем момент инерции маховика
, (2.21)
Маховик устанавливается на валу звена приведения.
Определим основные параметры маховика.
,кг (2,22)
где, - масса маховика, кг
- плотность материала, (материал-Сталь 45)
- ширина маховика, м
- диаметр маховика, м
,м (2,23)
где, - коэффициент (0,1÷0,3),
м
м
кг
Силовой анализ рычажного механизма
3.1 Построение плана скоростей для расчётного положения
Расчётным положением является положение №11. Построение плана скоростей описано в разделе №2. Масштабный коэффициент плана скоростей
Определение ускорений
Определяем угловое ускорение звена 1.
, (3.1)
где, - момент от сил движущих,
- момент от сил сопротивления,
- приведённый момент инерции маховика,
- приведённый момент инерции рычажного механизма для расчётного положения,
- первая производная от приведённого момента инерции механизма для расчётного положения
, (3.2)
где, - масштабный коэффициент по оси ,
- масштабный коэффициент по оси φ,
- угол между касательной, проведённой к кривой графика в расчётном положении и осью φ.
Знак минуса говорит о том, что кривошип ОА замедляется. Направляем против направления и берём значение ускорения по модулю.
Строим план ускорений для расчётного положения.
Скорость точки А определяем по формуле
, (3.3)
где, - ускорение точки А,
- нормальное ускорение точки А относительно точки О,
- тангенциальное (касательное) ускорение точки А,
Ускорение найдём по формуле:
, (3.4)
где, - угловая скорость кривошипа,
- длина звена ОА, м
Ускорение найдём по формуле:
, (3.5)
Из произвольно выбранного полюса откладываем вектор длиной 100 мм. Найдём масштабный коэффициент плана скоростей.
, (3.6)
Определим длину вектора :
Ускорение точки А определим из следующеё формулы:
Определим ускорение точки B из следующей системы уравнений:
, (3.7)
Для определения нормальных ускорений точки В относительно точек А и С
Воспользуемся следующими формулами:
Определим длину векторов :
Ускорение направляющей равно нулю, т.к. она неподвижна.
Кореолисово ускорение точки В относительно направляющей рано нулю, т.к. точка В движется только поступательно относительно .
Ускорение точки В найдём, решив системе (3.7) векторным способом:
Из вершины вектора ускорения точки А ( ) откладываем вектор (параллелен звену АВ и направлен от В к А), из вершины вектора
проводим прямую перпендикулярную звену АВ (линия действия ); из полюса проводим горизонтальную прямую (линия действия ); на пересечении линий действия векторов и получим точку b, соединив полученную точку с полюсом, получим вектор ускорения точки В.
Из плана ускорений определяем вектор ускорения точки В и вектор тангенциального ускорения :
Ускорение сочки С определяем аналогично ускорению точки B.
Определим длину векторов :
Из полученных тангенциальных ускорений найдём угловые ускорения 2-го и 3-го звеньев:
Определим ускорения центров масс звеньев:
Ускорение центра масс 2-го звена найдём из соотношения (3.10)
(3.8)
Из плана ускорений мм
мм
мм
Ускорение центра масс 4-го звена найдём из соотношения (3.11)
(3.9)
Из плана ускорений мм
мм
мм
Ускорения центров масс 3-го и 5-го звеньев равны ускорениям точек D и D’ соответственно:
Значения всех ускорений сведём в таблицу:
Таблица 3.1 – Ускорения звеньев
Ускорение точек механизма | Значение, | Ускорение центров масс и угловые ускорения | значение, , |
--- | --- | ||
--- | --- |
Дата: 2019-07-24, просмотров: 188.