РОЗДІЛ ІІ. ПОРІВНЯННЯ СИСТЕМАТИЧНОГО ВІДБОРУ, ПРОСТОГО ВИПАДКОВОГО ТА СТРАТИФІКОВАНОГО ВІДБОРІВ
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Місто StatVillage

StatVillage – це гіпотетичне місто, яке складається з окремих домогосподарств і використовується як база даних для студентів та аспірантів, що вивчають вибіркові методи.

Дані домогосподарств для StatVillage обирались навмання з результатів перепису сімей, що мешкали в домогосподарствах у місті Ванкувері, Британській Колумбії, Канаді у 1991 році. Сам перепис населення проходив шляхом анонімного анкетування. Бралися до уваги наступні характеристики:

· демографічні показники – розмір домогосподарства та його склад за віком та статтю;

· показники доходу – зайнятість, інвестиції, валові витрати, різні доходи домогосподарств та інші;

· житлові характеристики – тип житла, рік побудови, своє житло чи орендоване, оціночна вартість, щомісячні витрати на розміщення та інші;

· характеристика двох головних членів сім’ї, які відповідають за добробут сім’ї – вік, стать, професія, рідна мова, освіта, зайнятість і т.д;

Існують три конфігурації міста StatVillage:

· Maximal village – складається зі 128 блоків, кожен з яких містить 8 домогосподарств (загальна кількість домогосподарств - 1024).

· Mini village – складається з 60 блоків, кожен з яких містить 8 домогосподарств (загальна кількість домогосподарств – 480).

· Micro village – складається з 36 блоків, кожен з яких містить 8 домогосподарств (загальна кількість домогосподарств – 288).

Кожен блок домогосподарств нумерується в певному порядку, а саме

 


Рис. 2.1.1 Нумерування блоку домогосподарств

 

Для того, щоб отримати дані з міста StatVillage, необхідно спочатку відмітити домогосподарства позначкою як показано на рисунку 2.1.2 (відмічено кожне 8-ме домогосподарство)

 

Рис. 2.1.2 Систематичної вибірка кожного восьмого домогосподарства

 

Після цього натискаємо кнопку «Get the sample units» і отримуємо код, який представлений на рис. 2.1.3

 


Рис. 2.1.3 Код отриманої вибірки

 

Отриманий код містить 36 стовбців, кожен з яких відповідає за окрему характеристику домогосподарства. Розшифровка коду наведена в додатку А.

 



Порівняння відборів

В своїй роботі я використовую другу конфігурацією StatVillage, а саме Mini Village, яка складається з 60-ти блоків. Для того, щоб порівняти точності систематичного, простого випадкового та стратифікованого відборів, я буду використовувати вибірки, добуті з 11-го та 13-го стовпців коду. Ці стовпці називаються TOTINCH та BUILTH, що є загальним доходом домогосподарства (включає в себе заробітну плату, пенсії, дівіденти та відсотки за депозитами і т.д.) та періодом побудови домогосподарства відповідно.

В результаті дослідження виявилось, що домогосподарства в StatVillage впорядковані за загальним доходом, а саме загальний дохід зменшується зі зростанням номеру домогосподарства. Логарифмічна регресія значуща. На рисунку 2.2.1 представлена діаграма розсіювання та логарифмічна регресія.

 

 

Рис. 2.2.1 Діаграма розсіювання

 

Рівняння регресії:  F-статистика:  Логарифмічна регресія значуща.

 

Порівняємо дисперсії середнього доходу домогосподарств при систематичному відборі кожного восьмого домогосподарства, простому випадковому відборі та стратифікованому відборі. Після отримання коду з 11-го стовпця (див. рис 2.1.3) запишемо дані в таблицю 2.2.1, розділивши на 60 страт.

 

Таблиця 2.2.1 Дані по 8-ми систематичним вибіркам

Страта

Номер систематичної вибірки (k=8)

1 2 3 4 5 6 7 8
1 214500 306000 291178 274200 250000 224230 224308 215448 249983
2 173777 200000 194322 175879 175000 173058 163673 162425 177266,8
3 143140 156667 150750 148433 151774 155215 147700 144781 149807,5
4 127600 142800 140900 140000 145148 137400 132998 137526 138046,5
5 228148 127706 129400 127109 124365 124324 126280 122300 138704
6 116200 120000 120393 120021 117561 116876 116400 131253 119838
7 112000 116000 116000 116000 115000 115400 114497 115936 115104,1
8 110300 114766 121294 117000 112100 110000 110000 109600 113132,5
9 105000 110830 112144 108481 108000 108601 105493 105000 107943,6
10 108953 165544 114427 105200 122916 102865 105664 102900 116058,6
11 100800 102400 113340 101800 124400 100702 102567 105400 106426,1
12 102400 100400 101300 101000 100333 108470 99070 99800 101596,6
13 98433 99400 98957 100871 98719 105833 104889 101700 101100,3
14 96830 98100 98000 107589 96050 96000 130797 96193 102444,9
15 97700 94728 94600 94542 93929 93728 107275 93933 96304,38
16 93100 100850 95029 93000 93626 101800 92312 93610 95415,88
17 90000 93082 108632 101221 94304 92100 101150 90800 96411,13
18 87000 90000 88846 88697 92593 88400 88000 88800 89042
19 85500 96348 87483 88615 92728 86028 86000 86257 88619,88
20 84000 87073 85320 105548 97503 85800 85691 85120 89506,88
21 85170 120000 87893 83514 84134 83201 83080 83000 88749
22 82474 93489 82720 82530 102614 82800 82986 82080 86461,63
23 80000 84000 81777 80539 86759 81200 80800 80000 81884,38
24 79854 80000 80400 80000 113400 79350 80050 94375 85928,63
25 78400 79000 81268 79400 80800 79800 79532 86117 80539,63
26 76228 78075 77600 77985 77650 77359 79122 77096 77639,38
27 75733 77000 76149 76000 86069 78974 85351 95990 81408,25
28 74700 76400 75853 75000 76983 90305 87022 75528 78973,88
29 74000 74946 74961 99015 86590 84569 77300 74800 80772,63
30 84818 73587 77909 75210 79193 72400 73000 72110 76028,38
31 71050 72093 72200 72800 72800 71856 72174 71238 72026,38
32 70509 71400 71000 121762 71647 71397 72458 70750 77615,38
33 75129 70000 70800 70400 87400 74915 70000 70800 73680,5
34 69900 69731 73282 73792 69470 83568 69833 74300 72984,5
35 67681 69105 79079 76779 68550 71178 68033 72400 71600,63
36 67700 68400 71570 74400 78843 67400 67000 77141 71556,75
37 65659 66703 67217 66800 75000 72439 65400 66132 68168,75
38 65000 69320 65000 71800 65000 76890 66154 65500 68083
39 69600 65300 73111 65065 68457 69200 64400 65229 67545,25
40 63000 67200 71943 63652 66020 64400 63993 70740 66368,5
41 62900 63800 63800 62893 63200 63200 62697 63306 63224,5
42 63519 62500 62763 83643 62400 62095 65900 69725 66568,13
43 62364 61611 71443 61304 61300 61200 61908 65000 63266,25
44 92240 61400 68700 61355 61623 60468 61151 79534 68308,88
45 71233 61612 60800 61800 62000 60800 60910 60000 62394,38
46 58988 60374 63684 78065 60733 59000 59400 59400 62455,5
47 58400 111951 62227 58224 76761 58975 58000 58450 67873,5
48 57800 58500 62910 66981 71500 57400 57600 57800 61311,38
49 58354 57800 58871 58544 60217 56358 62763 57060 58745,88
50 55900 56800 57467 75196 55479 78122 69699 57527 63273,75
51 55350 56685 62369 55000 65300 59148 58400 71000 60406,5
52 61671 91516 61052 65277 56550 56850 73512 56000 65303,5
53 56467 54000 65700 73998 59781 55788 53530 53000 59033
54 52191 58700 57219 55441 53533 53300 52163 53879 54553,25
55 59391 52621 58086 55800 55500 52475 55818 52335 55253,25
56 51000 51713 59277 55347 51333 51600 53465 51857 53199
57 50527 54560 51000 51857 50859 50800 54540 50700 51855,38
58 53475 50500 50460 53426 93669 50000 55000 50800 57166,25
59 49517 71853 49400 49000 49214 75349 48594 49582 55313,63
60 47900 57499 48000 48992 48360 48400 50649 49105 49863,13
83852,88 88407,3 86154,58 86896,53 87045,67 83855,98 83469,18 83002,8 5120137
5031173 5304438 5169275 5213792 5222740 5031359 5008151 4980168  

 

У кожній страті міститься 1 блок, тобто 8 домогосподарств.

Знайдемо середнє та дисперсію для всієї популяції:

Тоді дисперсія оцінки середнього для простої випадкової вибірки має вид:

.

Середнє значення систематичної вибірки має розподіл

 ~

Оцінка  є незміщеною оцінкою для , дійсно .

Дисперсія систематичної вибірки дорівнює

Тепер знайдемо дисперсію одиниць, що належать до однієї і тієї самої страти:

Дисперсія оцінки середнього для стратифікованої випадкової вибірки

.

Отже, ми отримали такі результати:

.

Це означає, що


.

 

При наявності логарифмічної залежності між загальним доходом та номером домогосподарства систематичний відбір виявився точнішим за простий випадковий та стратифікований відбори.

Тепер розглянемо дані, в яких відсутній тренд. Використовуємо вибірки, добуті з 13-го стовпця коду. Цей стовбець має назву BUILTH і відповідає за період побудови домогосподарства.

В результаті дослідження даної вибірки, виявилось, що залежність між періодом побудови та номером домогосподарства відсутня. Лінійна регресія не значуща. На рисунку 2.2.2 представлена діаграма розсіювання та відсутність лінійної регресії.

 

 

Рис. 2.2.2 Діаграма розсіювання

 

Рівняння регресії:  F-статистика:  Лінійна регресія не значуща

 

 

Порівняємо дисперсії середнього періоду побудови домогосподарства при систематичному відборі кожного восьмого домогосподарства, простому випадковому відборі та стратифікованому відборі. Після отримання коду з 13-го стовпця (див. рис 2.1.3) запишемо дані в таблицю 2.2.2, розділивши на 60 страт.

 

Таблиця 2.2.2 Дані по 8-ми систематичним вибіркам

Страта

Номер систематичної вибірки (k=8)

1 2 3 4 5 6 7 8
1 5 7 5 2 7 5 4 2 4,625
2 6 7 1 5 7 1 5 6 4,75
3 7 2 6 3 3 2 7 5 4,375
4 6 2 7 8 2 4 3 3 4,375
5 4 5 7 5 5 6 4 8 5,5
6 4 6 4 5 7 7 3 2 4,75
7 3 5 5 5 4 7 4 7 5
8 5 4 5 5 5 7 6 6 5,375
9 4 4 4 4 4 3 5 2 3,75
10 7 7 5 7 5 1 2 6 5
11 1 6 5 2 7 2 6 2 3,875
12 5 3 7 6 7 3 7 7 5,625
13 5 2 5 6 1 7 4 5 4,375
14 4 7 6 5 5 6 7 5 5,625
15 2 4 5 4 5 4 2 7 4,125
16 5 7 5 5 5 7 3 4 5,125
17 5 5 2 5 5 6 3 7 4,75
18 7 7 3 2 7 5 5 2 4,75
19 5 7 5 5 2 3 4 7 4,75
20 1 5 7 8 5 4 3 2 4,375
21 3 7 4 5 7 5 7 5 5,375
22 4 5 7 5 2 6 5 5 4,875
23 4 3 5 5 5 6 5 5 4,75
24 7 2 5 4 1 4 5 2 3,75
25 7 7 7 7 5 4 4 2 5,375
26 6 5 5 2 5 4 3 4 4,25
27 2 5 4 7 2 5 7 1 4,125
28 5 5 6 2 7 4 4 4 4,625
29 4 4 6 5 7 6 4 2 4,75
30 4 4 4 5 3 6 5 7 4,75
31 4 2 7 6 5 5 5 4 4,75
32 4 7 7 2 7 5 5 7 5,5
33 5 7 7 6 7 5 4 2 5,375
34 2 6 5 5 2 6 5 5 4,5
35 4 3 4 2 5 1 3 5 3,375
36 8 5 4 5 6 3 7 3 5,125
37 5 3 5 5 2 7 7 6 5
38 6 4 6 5 3 4 2 4 4,25
39 1 7 7 6 1 6 5 7 5
40 4 2 7 7 5 1 3 5 4,25
41 7 6 6 2 2 3 4 5 4,375
42 5 3 5 4 7 2 5 4 4,375
43 5 5 2 4 6 5 3 4 4,25
44 7 3 5 4 5 5 5 6 5
45 5 6 7 5 5 6 5 4 5,375
46 7 2 7 7 3 7 5 5 5,375
47 3 4 4 5 5 4 6 1 4
48 3 6 6 4 5 1 2 4 3,875
49 6 7 3 7 2 3 4 6 4,75
50 7 5 7 5 2 4 3 2 4,375
51 2 1 2 6 4 5 3 3 3,25
52 3 7 5 5 7 5 4 4 5
53 7 7 7 4 4 5 4 1 4,875
54 3 1 6 7 7 6 5 8 5,375
55 4 7 5 3 3 7 5 3 4,625
56 3 3 5 3 5 5 1 7 4
57 4 6 4 2 6 5 5 5 4,625
58 3 5 2 4 7 6 3 2 4
59 5 3 5 5 5 5 3 4 4,375
60 4 3 7 3 3 5 7 6 4,75
4,55 4,75 5,18 4,7 4,63 4,62 4,4 4,4 279,25
273 285 311 282 278 277 264 264  

 

Знайдемо середнє та дисперсію для всієї популяції:

Тоді дисперсія оцінки середнього для простої випадкової вибірки має вид:

.

Середнє значення систематичної вибірки має розподіл

 ~

Також отримали, що .

Дисперсія систематичної вибірки дорівнює

Тепер знайдемо дисперсію одиниць, що належать до однієї і тієї самої страти:

Дисперсія оцінки середнього для стратифікованої випадкової вибірки

.

Отже, ми отримали такі результати:

.

Це означає, що

 

.

 

При відсутності тренду систематичний відбір виявився ефективнішим ніж стратифікований відбір, але менш точним ніж простий випадковий відбір. Якщо порівняти дисперсії систематичної та простої випадкової вибірок, то виявиться що вони дуже мало відрізняються. При випадковому порядку розміщення одиниць систематичний відбір в середньому рівносильний простому випадковому відбору (останнє підтверджує теоретичні положення підрозділу 1.3).

Для підвищення точності систематичного відбору, при дослідженні періоду побудови домогосподарства, застосуємо стратифікований систематичний відбір. Основна його ідея розглядалась у підрозділі 1.9. Отже, всю популяцію, яка складається з 60-ти блоків (по 8 домогосподарств у кожному), ділимо на 2 страти. В першій страті розміщуються з 1-го по 32-й блоки (тобто 256 домогосподарств), а в другій – з 33-го по 60-й блоки (224 домогосподарства). З кожної страти здобуваємо систематичні вибірки кожної 8-ї одиниці. Всього комбінацій здобуття таких систематичних вибірок з двох страт – 64 (8 комбінацій з першої страти та 8 – з другої страти). Середнє значення стратифікованої систематичної вибірки рахується за формулою

 

,

 

де  - це вага страти , а - середнє значення систематичної вибірки у страті .

Так як я буду розглядати 2 страти, то середнє значення стратифікованої систематичної вибірки має вигляд:

 

 

а  для кожної систематичної вибірки у першій або другій страті своє.

Після розглядання всіх стратифікованих систематичних вибірок кожної 8-ї одиниці запишемо розподіл :

Також має місце рівність .

Дисперсія середнього стратифікованої систематичної вибірки дорівнює:

.

При застосуванні стратифікованого систематичного відбору для періоду побудови домогосподарства маємо наступні результати:

.

Це означає, що

 

.

 

При відсутності тренду стратифікований систематичний відбір є точнішим за простий випадковий та стратифікований відбори. Тобто стратифікований систематичний відбір дає більш точну оцінку ніж звичайний систематичний відбір.




Висновки

 

Вибірковий метод – метод дослідження, що дозволяє робити висновок про характер розподілу досліджуваних ознак популяції на основі розгляду деякої її частини (тобто вибірки). Прикладом вибіркових обстежень може бути визначення середнього рівня доходів населення, визначення переліку споживчих переваг, визначення рейтингу кандидата на виборах та інші. Існують різні методи вибіркового обстеження: простий випадковий відбір, стратифікований відбір, систематичний відбір, кластерний та інші. Для різних популяцій різні методи відбору можуть бути більш точними або менш точними.

Розглянемо простий, систематичний та стратифікований відбори. Простим випадковим відбором називається спосіб добування  одиниць вибірки з  одиниць популяції так, що кожна з  вибірок має рівну імовірність бути відібраною. За допомогою таблиці або датчика випадкових чисел добуваємо вибірку обсягом .

Систематичний відбір полягає у тому, що з популяції, одиниці якої перенумеровані від 1 до , для здобуття вибірки обсягу  спочатку навмання вибираємо будь-яку одиницю з перших  одиниць популяції (наприклад, п’яту одиницю з 8-ми одиниць). Після вибору першої одиниці вибираємо кожну -ту одиницю популяції (тобто 10-ту, 15-ту, 20-ту, 25-ту,…., -ту). Таку вибірку називають систематичною вибіркою кожної -ї одиниці.

Стратифікований відбір полягає в тому, що вся популяція поділяється на менші під популяції (страти), які не мають спільних одиниць і кожна з яких внутрішньо однорідна. Потім за допомогою простого випадкового відбору з кожної страти здобувається вибірка. Такий відбір називається стратифікованим випадковим відбором. Наприклад, популяція з  одиниць поділена на  страт, по 8 одиниць у кожній страті. З кожної страти здобуваємо по 2 одиниці за допомогою таблиці або датчика випадкових чисел. В результаті отримаємо: в першій страті числа 2, 7; в другій страті - 13, 16; і т.д.

В роботі ставиться задача порівняння точності систематичного відбору, простого випадкового та стратифікованого відбору.

Для розв’язання цієї задачі використано наступні теоретичні положення.

1. Середнє значення  систематичної вибірки є незміщеною оцінкою для середнього значення популяції .

 

 (1)

 

2. Дисперсія середнього значення систематичної вибірки визначається формулою (2)

 

 (2)

 

де дисперсія одиниць, які належать одній систематичній вибірці визначається формулою (3),

 

 (3)

 

а дисперсія популяції визначається формулою (4)

 

 (4)

 

3. Середнє значення для систематичної вибірки більш точне, ніж середнє для простої випадкової вибірки


 

тоді і тільки тоді, коли справедлива нерівність (5)

 

. (5)

 

4. Дисперсія середнього значення систематичної вибірки може визначатись й формулою (6)

, (6)

 

де - коефіцієнт кореляції між парами одиниць, що належать до однієї й тієї самої систематичної вибірки.

 

 (7)

 

5. Дисперсія середнього значення систематичної вибірки може ще визначатись формулою (8)

 

, (8)

 

де дисперсія одиниць, що належать до однієї й тієї самої страти визначається формулою (9)

 

. (9)

 


Величина

 

. (10)

 

є коефіцієнтом кореляції між відхиленнями від середнього значення для страти по всім парам одиниць, що належать до однієї й тієї ж систематичної вибірки.

Зауважимо, що формули 2, 6, 8 - еквівалентні

6. Якщо в популяції одиниці розташовані навмання розглянемо всі  скінчених популяцій, що утворюються за допомогою  перестановок деякого набору чисел . Тоді в середньому по всім цим скінченим популяціям справедлива формула (11)

 

. (11)

 

Тобто, коли одиниці вибірки розташовані випадково систематичний відбір в середньому рівносильний простому випадковому відбору.

Якщо між деякими характеристиками популяції наявна лінійна залежність, то справедлива нерівність (12).

 

. (12)

 

Тобто, стратифікований відбір точніший за систематичний відбір, який в свою чергу точніший простого випадкового відбору.

В своїй роботі я порівнювала точність систематичного відбору, простого випадкового та стратифікованого відбору, користуючись програмою StatVillage.

StatVillage – це гіпотетичне місто, яке складається з окремих домогосподарств і використовується як база даних для студентів та аспірантів, що вивчають вибіркові методи.

Дані домогосподарств для StatVillage обирались навмання з результатів перепису сімей, що мешкали у місті Ванкувері, Британській Колумбії, Канаді у 1991 році. Сам перепис населення проходив шляхом анонімного анкетування. Бралися до уваги наступні характеристики:

· демографічні показники (розмір домогосподарства та його склад за віком та статтю);

· показники доходу (зайнятість, інвестиції, валові витрати, різні доходи домогосподарств та інші);

· житлові характеристики (тип житла, рік побудови, своє житло чи орендоване, оціночна вартість, щомісячні витрати на розміщення та інші);

· характеристика двох членів сім’ї, які відповідають за добробут сім’ї (вік, стать, професія, рідна мова, освіта, зайнятість і т.д;)

Домогосподарства були розташовані згідно з загальним доходом від найбільшого до найменшого.

Існують три конфігурації міста StatVillage: Maximal village – складається зі 128 блоків, Mini village – складається з 60 блоків, та Micro village – складається з 36 блоків.

Для того, щоб отримати дані з міста StatVillage, необхідно спочатку відмітити домогосподарства позначкою. Після чого натискаючи кнопку «Get the sample units», отримуємо код. Отриманий код містить стовпці, кожен з яких відповідає за окрему характеристику домогосподарства

Порівнювати точності систематичного, простого та стратифікованого відборів, я буду використовувати вибірки, добуті з 11 та 13 стовпців коду. Ці стовпці відповідають – загальним доходам домогосподарства (включають в себе заробітну плату, пенсії, дівіденти та відсотки за депозитами) та періоду побудови домогосподарства.

В результаті дослідження виявилося, що загальний дохід зменшується зі зростанням номеру домогосподарства. Логарифмічна регресія значуща. Для загального доходу систематичний відбір виявився точнішим за простий випадковий та стратифікований відбори.

При дослідженні періоду побудови домогосподарства виявилося, що будь-яка залежність відсутня. Лінійна регресія не значуща. Систематичний відбір виявився більш точним ніж стратифікований випадковий відбір, але менш точним у порівнянні з простим випадковим відбором. Але можна помітити, що дисперсії простої випадкової та систематичної відбірок відрізняються мало. Отже, коли одиниці вибірки розташовані випадково систематичний відбір майже рівносильний простому випадковому відбору.

Останню оцінку можна покращити, застосувавши стратифікований систематичний відбір. Для цього всю популяцію ділимо на 2 страти. З кожної страти здобуваємо систематичні вибірки. Всього комбінацій здобуття вибірок з обох страт – 64. Дисперсія середнього стратифікованої систематичної вибірки виявилась меншою за відповідну дисперсію звичайної систематичної вибірки. Отже стратифікований систематичний відбір є точнішим за простий випадковий та стратифікований відбори.

Ефективність систематичного відбору в порівнянні зі стратифікованим або простим випадковим відбором суттєво залежить від особливостей популяції. Існують такі популяції, в яких систематичний відбір дає високу точність, але є й такі, для яких простий випадковий відбір є більш точним ніж систематичний. В будь-якому випадку для того, щоб застосування систематичного відбору було ефективним, необхідно знати будову популяції, з якої проводиться відбір.

Систематичні вибірки зручно намічати та вилучати. У більшості досліджень як по штучним, так і по реальним популяціям, вони вигравали в точності у порівнянні зі стратифікованими випадковими вибірками. Недоліки систематичної вибірки полягають в тому, що її точність може виявитись невисокою, якщо існує несподівана періодичність, і в тому, що невідомий надійний метод оцінювання  за даними вибірки. Але не дивлячись на це, систематичний відбір рекомендований у наступних ситуаціях.

1. Якщо одиниці популяції розташовані в основному навмання або якщо стратифікування в популяції намічено досить слабо. В цьому випадку систематичний відбір застосовується, оскільки він зручний і не можна розраховувати на виграш в точності. Є вибіркові оцінки похибки, зміщення яких знаходиться у допустимих границях.

2. Якщо застосовується стратифікування з великим числом страт і систематична вибірка вилучається незалежно з кожній страти. В цьому випадку вплив прихованої періодичності має тенденцію нейтралізуватися і можна одержати оцінку похибки, яка заздалегідь перевищена. При іншому способі можна скористатися лише половиною страт та вилучити з кожної страти по дві систематичні вибірки з незалежним випадковим початком відліку. Такий спосіб забезпечує незміщену оцінку похибки.

3. При підвідборі одиниць. В цьому випадку виявляється, що у більшості практичних додатків можна отримати незміщену оцінку похибки вибірки.

4. При вибірковому вивчені популяцій з варіацією неперервного характеру за умови, що оцінка похибки вибірки звичайно не вимагається. Якщо проводиться ряд обстежень такого типу, то може виявитись достатнім перевіряти похибки вибірки лише від випадку до випадку. Йейтс (1948) вказує, що можна робити таку перевірку за допомогою додаткових спостережень.

 





СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

1. Кокрен У. Методы выборочного исследования. Пер. с англ. И.М. Сонина. Под ред. А.Г. Волкова. – М.: Статистика, 1976. – 440 с. с ил.

2. Черняк О.І. Техніка вибіркових досліджень. – К.: МІВВЦ, 2001. – 248 с.

3. Пархоменко В.М. Методи вибіркових обстежень. Навчальний посібник. – К.,2001. – 148 с.

4. Govindarajulu Z. “Elements of sampling theory and methods”

5. Sharon L. Lohr Sampling: Design and Analysis – Duxbury Press, 1999. – 253c.

Дата: 2019-07-24, просмотров: 278.