Контролируя дрейф электронов внутри полупроводников, можно заменить устройствами на их основе вакуумные приборы. Так как в таких полупроводниковых устройствах вместо вакуума используются твердые вещества, их еще иногда называют твердотельными.
Представьте себе кристалл, одна часть которого имеет n -тип и подключена к «минусу» батареи, а вторая — p -тип и подключена к «плюсу». Когда цепь замкнута, электроны первой части отталкиваются от отрицательного электрода и устремляются к месту перехода между двумя половинами, а дырки второй части отталкиваются от положительного электрода и также устремляются к месту перехода. Там электроны нейтрализуют дырки и, отталкиваясь от положительного электрода, создают новые. Таким образом, все время, пока замкнута электрическая цепь, в кристалле течет ток.
Электроны и дырки
А теперь представьте, что кристалл подключен к батарее наоборот: половина n -типа — к «плюсу», а p -типа — к «минусу». В этом случае электроны притягиваются к положительному электроду, дырки — к отрицательному, и сначала в месте перехода, а затем и во всем кристалле не остается ни дырок, ни свободных электронов, то есть кристалл перестает проводить ток.
Короче говоря, в таком n-р- кристалле ток течет лишь в одном направлении. Такой n-p- кристалл может выпрямлять переменный ток. Кроме того, его часть n-типа может заменить нить вакуумной трубки, а часть p -типа — пластину, а сам кристалл будет работать как диод. Такое устройство называется диодом на p-n-переходе.
Полупроводниковые аналоги существуют и у триодов. В этом случае кристалл состоит из трех зон: n-типа по бокам и p -типа в середине. Зона p-типа является модулятором. Таким образом, в таком кристалле два перехода — n-p и p-n.
Если подключить один конец кристалла к «минусу», а второй — к «плюсу» батареи, то электроны, отталкиваемые отрицательным электродом, устремятся к зоне p -типа, а электроны, притягиваемые положительным полюсом, будут удаляться от зоны p -типа, и за счет этого начнут двигаться электроны зоны p-типа. То есть электроны будут перемещаться из одного конца кристалла в другой, при этом p-зона будет тормозить их движение. Изменяя заряд зоны p -типа, можно регулировать скорость электронного потока.
Такой триод был впервые создан в 1948 году английским физиком Уильямом Шокли (1910–1989) совместно с американскими физиками Джоном Бардином (1908–1991) и Уолтером Браттейном (1902–1987). Устройство получило название плоскостной полупроводниковый триод, или транзистор (от англ. transfer — проводить и resistor — сопротивление. — Пер.).
В природе иногда встречаются неидеальные кристаллы полупроводников с примесью других элементов в нужной пропорции. В первые дни радио, еще до появления электровакуумных приборов, такие кристаллы уже использовались для выпрямления электрического тока. Приемники на таких кристаллах назывались детекторными.
В свое время развитие электровакуумных ламп привело к прекращению использования детекторных приемников, однако появление транзисторов возродило кристалл. У транзисторов несколько преимуществ по сравнению с лампами. Транзисторы твердотельные, им не нужен вакуум, а значит, и ударопрочность у них выше. Так как у транзисторов нет нити накаливания, то, в отличие от ламп, им не нужно разогреваться, да и работают они дольше. А самое главное — размеры транзистора могут быть в десятки, сотни, тысячи раз меньше, чем у вакуумной трубки.
Радиоприемник на лампах — это большой и громоздкий ящик, а транзисторный радиоприемник можно сделать размером с пачку сигарет. Использование транзисторов привело к миниатюризации абсолютно всех приборов. Особенно это заметно в вычислительной технике, ведь количество ламп в ламповых компьютерах достигает нескольких тысяч! С появлением транзисторов размеры таких компьютеров уменьшились в десятки раз.
Полупроводники можно также использовать для непосредственного преобразования тепловой энергии в электрическую. Феномен теплоэлектричества был открыт в 1921 году немецким физиком Томасом Иоганном Зеебеком (1770–1831). Он обнаружил, что если при нагревании двух различных соединенных между собой металлов поместить в месте соприкосновения этих металлов иголку, то она будет отклоняться. Феномен получил название явление Зеебека, или термоэлектрический эффект.
Таким образом, при нагревании в цепи появляется электрический ток, который и приводит к возникновению магнитного поля. Однако Зеебек полагал, что эффект этот чисто магнитный, а не электромагнитный (в то время ученые только начинали говорить о связи между электричеством и магнетизмом, и интерес к явлению Зеебека угас вплоть до середины XX века).
Рассмотрим полупроводник n -типа, одна сторона которого подвергается нагреванию. Электроны этой половины под действием температуры будут перемещаться на одну энергетическую зону, откуда они и начнут дрейфовать к холодному концу кристалла. В кристалле возникает электрический ток (холодная половина — «минус», горячая — «плюс»). То же самое происходит и в обычном проводнике, однако в холодной половине обычного проводника и без того много свободных электронов, которые начнут отталкивать электроны, поступающие из нагреваемой половины, и электрический ток будет крайне слабым. А в холодной половине полупроводника свободных электронов практически нет, значит, и дрейфующие электроны отталкивать нечему, поэтому при нагревании в полупроводнике возникает гораздо больший, чем в обычном проводнике, электрический потенциал.
При нагревании одного конца полупроводника p-типа под действием энергии извне электроны становятся гораздо более подвижными и дырки этой половины заполняются быстрее, а в холодной половине образуются новые дырки. Таким образом, дырки дрейфуют от нагреваемого конца кристалла к холодному и в полупроводнике появляется электрический ток (нагреваемая часть — «минус», холодная — «плюс»).
Если соединить полупроводники n-типа и p-типа и подвергнуть место соединения нагреванию, то электроны холодной половины полупроводника p-типа через переход устремятся в сторону холодного конца полупроводника n-типа. Если подключить такой кристалл в электрическую цепь, то, пока кристалл подвергается нагреванию, в цепи будет электрический ток. Таким образом, с помощью полупроводника и, например, керосиновой лампы можно создать генератор электрического тока без движущихся частей.
Можно добиться и обратного эффекта. Если пропустить электрический ток через электрическую цепь из нескольких полупроводников, то кристаллы начнут выделять тепло. Это явление впервые наблюдал французский физик Жан Шарль Пельтье (1785–1845) в 1834 году, поэтому оно и получило название эффект Пельтье (или электротермический эффект). Если же пропустить электрический ток через соединенные с одного конца кристаллы полупроводников p -типа и n-типа, то один конец такого кристалла будет нагреваться, а второй, наоборот, охлаждаться.
С помощью полупроводников можно также преобразовывать свет в электрическую энергию. Такая солнечная батарея состоит из полупроводника n-типа, покрытого тонким слоем полупроводника p -типа. В части n-типа присутствует огромное количество свободных электронов, которые устремляются в дырки части p-типа, и, пока все дырки не заполнены, между двумя полупроводниками на очень короткое время возникает электрический ток.
Когда на такой кристалл падает солнечный свет, то под действием энергии электроны вновь возвращаются в часть n-типа, а в части p-типа образуются новые дырки, то есть электрический ток будет возникать постоянно. Солнечные батареи успешно используются для питания искусственных спутников Земли.
Мазеры и лазеры
Электронные уровни находятся на определенном расстоянии друг от друга, а заполняться могут только путем выделения или поглощения фотонов определенного размера. Именно этот факт привел к появлению очень важных электротехнических устройств.
Например, у молекулы аммиака (NH4) 2 энергетических уровня, разделенные запрещенной энергетической зоной, ширина которой соответствует размеру заряда фотона, необходимого для излучения микроволны частотой 24 млрд. Гц, то есть 1,25 см.
Разницу между энергетическими уровнями можно рассмотреть с геометрической точки зрения. Тогда 3 атома водорода молекулы аммиака можно представить как три вершины равностороннего треугольника, а атом азота будет располагаться на некотором расстоянии от центра этого треугольника. При изменении количества электронов на энергетическом уровне атом азота перейдет на другую сторону треугольника сквозь его плоскость. Таким образом, молекулу аммиака можно заставить вибрировать с частотой 24 млрд. раз в секунду.
Этот период колебания повторяется с чрезвычайной точностью. Точность эта гораздо выше, чем у любого созданного человеком устройства, и даже точнее движения космических тел. На основе такой молекулы можно создавать высокоточные атомные часы, погрешность которых — всего одна секунда на 100 000 лет.
Теперь рассмотрим только лишь энергетические уровни. При прохождении микроволн через газообразный аммиак молекулы поглощают часть микроволновой энергии и поднимаются на уровень выше (из центра к периферии. — Пер.).
Но что происходит с теми молекулами, которые уже находятся на высшем уровне? В 1917 году Эйнштейн выявил, что когда фотон определенного размера ударяется о такую молекулу, то молекула переходит на уровень ниже, двигаясь в том же, что и фотон, направлении и испуская фотон излучения того же размера. То есть под действием микроволнового излучения молекулы аммонии будут либо подниматься с нижних уровней на верхние, либо опускаться с верхних на нижние. При нормальных условиях последнее будет происходить реже, так как на верхнем уровне будет находиться лишь небольшое количество молекул.
Предположим, что возможно каким-либо способом переместить большую часть молекул на верхний уровень. Тогда фотон микроволнового излучения толкнет молекулу на уровень ниже и та выделит еще один фотон. Оба фотона ударятся еще о две молекулы, и те выделят еще два фотона. Эти четыре фотона столкнутся с еще двумя молекулами, и получится уже 8 фотонов и т. д. Исходный фотон породит целую лавину фотонов одинакового размера и двигающихся в одном направлении.
Над разработкой подобного устройства одновременно работали и американские, и советские ученые, однако пальма первенства принадлежит все же американскому физику Чарлзу Таунсу. В 1953 году он разработал метод, с помощью которого возбужденные молекулы аммиака можно изолировать и подвергнуть стимуляции с помощью микроволнового излучения для усиления входящего излучения, то есть входит один фотон, а выходит целый поток.
Такой прибор называется квантовый генератор СВЧ-диапазона, или по-английски мазер. В последующие годы термин «мазер» вытеснил термин «атомные часы».
Вскоре был разработан и твердотельный мазер, состоящий из помещенного в магнитное поле парамагнитного материала (см. ч. II). Электрон в таком мазере может находиться лишь на одном из двух энергетических уровней: если спин электрона совпадает с направлением магнитного поля, то он занимает нижний уровень, а если электрон вращается в противоположную сторону, то он занимает верхний уровень. Под действием магнитного поля электроны постепенно выталкиваются с верхнего уровня на нижний. При переходе на нижний уровень все электроны выделяют излучение одной и той же частоты (монохроматическое излучение).
Первые мазеры (и газовые, и твердотельные) не могли работать непрерывно. Такой мазер сначала нужно было накачать электромагнитным излучением, затем мазер выдавал вспышку излучения, после чего его было необходимо накачивать заново.
Для преодоления этой проблемы американский физик Николас Бломберген использовал системы из трех уровней. При добавлении в систему мазера атомов металла (например, хрома или железа) электроны будут распределяться уже не на два, а на три уровня: верхний, средний и нижний. В этом случае накачка и излучение могут происходить одновременно. Электроны будут подниматься с нижнего уровня на верхний, а с помощью определенной стимуляции можно заставить их опускаться сначала на средний и только потом на нижний уровень. А так как для накачки и для стимуляции необходимы фотоны разного размера, то эти два процесса не будут друг другу мешать, и мазер может работать непрерывно.
Так как мазеры усиливают слабое микроволновое излучение с высокой точностью (то есть с крайне незначительными «шумами»), то в радиоастрономии они используются в качестве высокочувствительных микроволновых приемников.
В принципе этот метод можно использовать и применительно к электромагнитным волнам любой длины, например световым. Таунс впервые заговорил об этом в 1958 году. Такой световой мазер получил название оптический мазер, или лазер.
Первый лазер был создан в 1960 году американским физиком Теодором Майманом. Майман применил в своем приборе трубку из синтетического рубина, состоящего из оксида алюминия с большой примесью оксида хрома (собственно, именно оксид хрома и дает рубину его красный цвет). Под действием света электроны атомов хрома поднимаются на верхние уровни и через небольшой промежуток времени вновь падают вниз. Первые фотоны света (длина волны которых составляет 694,3 миллимикрона) стимулируют появление других фотонов, и кристалл рубина испускает короткую вспышку красного света. В том же году были разработаны и лазеры с непрерывным режимом работы.
Лазер дал людям не только совершенно новую форму света высокой интенсивности и монохроматичности, но и кое-что еще.
Дело в том, что свет любого другого происхождения (солнечный или образующийся в результате горения) состоит из огромного числа пакетов относительно коротких расходящихся во всех направлениях волн.
Лазерное же излучение состоит из движущихся в одном и том же направлении фотонов одинакового размера. То есть такой свет состоит из следующих строго друг за другом пакетов волн одинаковой длины, и все эти волны сливаются в один сплошной световой луч. Такой свет называется когерентным. Конечно же физики научились генерировать длинные когерентные волны уже довольно давно (например, несущая волна радиопередачи также является когерентной), однако лишь в 1960 году стало возможным генерировать когерентные световые волны.
Благодаря особому устройству лазера все излучаемые фотоны движутся в одном направлении. Оба конца рубиновой трубки отполированы до зеркального блеска и дополнительно покрыты серебром. Излучаемые фотоны отражаются от этих зеркал и движутся туда-сюда внутри кристалла, генерируя все больше и больше фотонов. В конце концов пучок фотонов достигает такой интенсивности, что проходит сквозь покрытую меньшим слоем серебра сторону рубина. Понятно, что этот пучок состоит лишь из фотонов, движущихся параллельно продольной оси рубина. Остальные фотоны, пусть даже и с небольшим отклонением от оси, уже после нескольких отражений от зеркальных стенок вылетят за пределы рубина.
Когерентные волны лазера настолько параллельны друг другу, что луч лазера, практически не расходясь, может преодолевать огромные расстояния. В 1962 году ученые направили лазерный луч на Луну, и оказалось, что через почти 400 000 километров диаметр пучка лазера увеличивается всего лишь до 3 километров.
Вскоре были созданы лазеры на основе не только металлов, но и фторидов, вольфраматов, полупроводников и большинства газов; такие лазеры способны производить излучение как видимой, так и инфракрасной части спектра.
Пучок лазерного луча очень маленький, а это значит, что на небольшой площади можно сфокусировать огромную энергию. Под действием лазера металл быстро переходит в газообразное состояние, и ученые используют это свойство лазера при спектральном анализе металлов. С помощью лазера можно прожигать отверстия любого диаметра даже в тугоплавких материалах. А в микрохирургии глаза с помощью лазера можно настолько быстро приварить отслоившуюся сетчатку, что близлежащие ткани просто не успеют «обжечься».
В ближайшем будущем у лазеров появится еще огромное количество различных применений. Когда они появятся, мы обязательно поговорим о них в следующих изданиях этой книги.
Материальные волны
Попытка Бора применить квантовую теорию к атому принесла огромное количество как теоретических, так и практических плодов: удалось дать объяснение периодической таблице, появился совершенно новый класс устройств — твердотельные приборы… Физики остались довольны.
Но квантованный атом не решил проблем химиков, так и не объяснив, как же атомы соединяются в молекулы. Если модель атома Льюиса — Ленгмюра хоть как-то объясняла этот процесс с помощью кубов и общих электронов, то разобрать что-либо среди прыгающих с одного энергетического уровня на другой электронов квантованного атома было просто невозможно.
Ответ вырос из другой неразрешимой на первый взгляд загадки — связи между частицами и волнами. В начале XX века физики окончательно убедились, что свойства света да и электромагнитных волн в целом точно такие же, как и у частиц. Комптон-эффект (см. ч. II) окончательно убедил ученых, что частицы и волны могут образовывать единое целое и совмещать в себе свойства и частиц, и волн.
Но относится ли это лишь к электромагнитному излучению? Что, если не только волны проявляют свойства частиц, но частицы также могут проявлять некоторые свойства волн?
Французский физик Луи де Бройль (1892–1987) как раз занимался изучением этого вопроса. Он применил к электронам соотношения, справедливые для фотонов, то есть частиц. В 1923 году де Бройль опубликовал следующую формулу:
λ = h/mv, (Уравнение 6.1)
где h — постоянная Планка (см. ч. II); m — масса движущейся частицы; v — ее скорость (произведение mv есть ее импульс); λ — принятое обозначение длины волны.
Теоретически эту формулу можно применить к любому движущемуся объекту, хоть к теннисному мячу, хоть к планете. Однако с возрастанием импульса длина волны сокращается, поэтому измерить частоту излучения, испускаемого летящим теннисным мячом, существующими способами просто невозможно, да и не нужно.
Тем не менее длина волн, излучаемых объектами с ничтожной массой, например электронами, относительно велика и равняется длине волны рентгеновского луча. (Впрочем, хотя длина волны и одинаковая, природа такого излучения отличается от природы рентгеновского луча. Волны, излучаемые частицами, по своей природе не являются электромагнитными, поэтому мы назовем их «материальными волнами».)
Если длина материальной волны равна длине волны рентгеновского излучения, значит, ее можно обнаружить тем же способом, что и рентгеновский луч. Рентгеновское излучение было обнаружено при помощи кристаллов. Так, может, и материальные волны можно также обнаружить при помощи кристаллов?
Первые удачные попытки осуществить это были сделаны в 1927 году английским физиком Джорджем Томсоном (1892–1975), а также американскими физиками Клинтоном Дэвиссоном (1881–1958) и Лестером Гермером (1896–1971), работавшими независимо от Томсона. В последующие годы ученым удалось обнаружить волновые свойства и у других, более тяжелых частиц, и уже не осталось никаких сомнений в том, что любой объект, обладающий волновыми свойствами, обладает и свойствами частицы, и наоборот.
Аналогия между материальными волнами и электромагнитным излучением проявилась в микроскопии.
При использовании световых волн у микроскопа существует предел разрешающей способности, и, какой совершенной бы ни была оптическая «начинка» прибора, с его помощью нельзя изучать образцы, размеры которых меньше 3/5 длины световой волны.
Образно говоря, свет будет просто «обходить» такой образец. Даже при использовании самых коротких видимых световых волн, скажем длиной 380 миллимикрон, с помощью микроскопа невозможно будет разглядеть объекты менее 200 миллимикрон в диаметре, например вирусы. Таким образом, оптический микроскоп позволяет увеличивать изображение максимум в 2000 раз.
Для увеличения разрешающей способности микроскопов сначала стали применять электромагнитные волны, но использование материальных волн дало максимальный результат. Сегодня для этих целей используются в основном электронные волны, длина которых равна длине рентгеновского излучения. С помощью магнитного поля можно сфокусировать четкий электронный пучок так же, как можно сфокусировать пучок света с помощью линзы. Образец должен быть довольно тонким, чтобы электроны могли свободно проходить сквозь него. Кроме того, образец должен находиться в вакууме, иначе содержащиеся в воздухе частицы рассеют электронный пучок. С помощью такого микроскопа можно исследовать абсолютное большинство предметов.
Образец располагается между источником электронного излучения и фотографической пластиной или же люминесцентным экраном. Проходя через образец, электроны рассеиваются и поглощаются отдельными его частями, в результате чего на экране появляется черно-белое изображение объекта.
Первый электронный микроскоп был создан в 1931 году в Германии немецким физиком Эрнстом Руской (1906–1988). Уже в 1934 году были созданы электронные микроскопы, превосходящие по увеличению оптические, а начинам с 1939 года такие микроскопы стали производить в коммерческих целях. Современные электронные микроскопы увеличивают в тысячи крат сильнее, чем лучшие их оптические собратья.
Электронный микроскоп
Материальные волны вошли и в мир атомной теории. Австрийский физик Эрвин Шрёдингер (1887–1961) подошел к проблеме изучения структуры атома с точки зрения не только частиц, но и волн.
Шрёдингер представил электрон в виде вращающейся вокруг ядра волны. В этом случае описываемая электроном орбита должна соответствовать количеству испускаемых электроном волн. За один оборот вокруг ядра по постоянной орбите электрон излучает одно и то же количество волн, т. е. его излучение является стоячей волной.
Когда электрон поглощает некоторое количество энергии, длина его волны уменьшается, и, оставаясь на той же орбите, он уже не может излучать такое же количество волн. То же самое происходит и когда электрон теряет часть своей энергии, а длина волны увеличивается.
Учитывая, что количество волн, производимых электроном за один оборот вокруг ядра, не должно быть дробным числом, необходимо, чтобы при излучении или поглощении электроном энергии длина испускаемых волн увеличивалась или уменьшалась, а их общее количество оставалось целым числом. Например, если вместо четырех волн электрон будет излучать пять более коротких, то уровень его энергии увеличится, а если вместо четырех волн будет три более длинных — уменьшится. Если количество испускаемых волн сократилось до одной волны максимальной длины, значит, электрон опустился на ближайший к ядру энергетический уровень и больше не может терять энергию.
Получается, что каждому энергетическому уровню соответствует определенная стоячая волна. Шрёдингер проанализировал все это математически и в 1926 году вывел волновое уравнение.
Изучение поведения атомов на основе модели Шрёдингера называется волновой механикой, или, так как поглощаться или излучаться могут лишь кванты энергии, квантовой механикой.
Квантовая механика тут же завладела сердцами физиков. Она превосходила матричную механику Гейзенберга (см. гл. 6) психологически, так как квантовая механика Шрёдингера давала волнам визуальный облик, пусть и сложный для восприятия, в то время как числам Гейзенберга явно не хватало наглядности.
В 1944 году венгерский математик Джон Нейман (1903–1957) выдвинул предположение, что с математической точки зрения квантовая механика и матричная механика равнозначны: одно и то же явление можно продемонстрировать с точки зрения как квантовой, так и матричной механики[126].
Теоретически квантовую теорию можно применить и для объяснения химического поведения атомов. Однако, как показывает практика, произвести подобные чудовищные расчеты невозможно даже с использованием современных вычислительных средств. Поэтому химия до сих пор остается намного менее изученной наукой, чем физика.
Тем не менее с помощью квантовой теории можно объяснить процесс формирования молекул из атомов. Американский химик Лайнус Полинг (1901–1994) показал, как из двух атомов образуется молекула — соединение, обладающее гораздо большей, чем отдельные атомы, стабильностью. Общая электронная оболочка модели атома Льюиса — Ленгмюра у Полинга превратилась в две резонирующих друг с другом волны (см. ч. I). Теория резонанса Полинга подробно описана в его работе «Природа химических связей» (1939).
Теория резонанса объясняет структуру и поведение молекул гораздо глубже, чем модель Льюиса — Ленгмюра. В частности, Полингу удалось объяснить образование молекул бензола и гидридов бора. Вообще квантовая механика помогает разгадывать все больше и больше тайн современной химии.
В 1927 году Гейзенберг выявил еще одно важное свойство волновой природы электрона (и частиц в целом). Дело в том, что если рассматривать частицу не как частицу, а как волну, то картинка получается гораздо более размытой. А так как все во Вселенной состоит из частиц, обладающих в том числе и свойствами волн, то и картина Вселенной также становится гораздо более размытой.
Местоположение любой частицы (или ее центра) в космосе можно определить с очень большой точностью, а вот точное местоположение волны определить уже гораздо сложнее.
Рассуждая над этим, Гейзенберг предположил, что невозможно одновременно точно определить и местоположение, и импульс частицы. Доводом ученого являлось то, что любая попытка точно определить местоположение частицы (любым технически возможным и невозможным способом) автоматически приводит к изменению скорости движения этой частицы и соответственно к изменению ее импульса, т. е. значение ее импульса станет более неопределенным. И наоборот, любая попытка точно измерить импульс частицы приведет к изменению ее местоположения, и местоположение будет более неопределенным. Чем выше точность измерения одной величины, тем выше погрешность изменения второй.
Кратко вышесказанное можно выразить следующей формулой:
(Δp)(Δx) = h, (Уравнение 6.2)
где Δp — погрешность измерения местоположения, Δx — погрешность измерения импульса; h — постоянная Планка (символ ≈ означает «приблизительно равно»). Эта формула получила название принцип неопределенности Гейзенберга.
С философской точки зрения Гейзенберг пришел к весьма неутешительным выводам, ведь еще со времен Ньютона ученые свято верили в науку, верили в то, что хотя бы теоретически измерения можно производить с абсолютной точностью. А тут выясняется, что на пути к абсолютному знанию стоит непреодолимая стена, стена, возведенная самим мирозданием. Конечно, это тяжелый удар для всего научного сообщества.
Даже сам Эйнштейн долго не мог примириться с неопределенностью, так как этот принцип ставил под сомнение существование причинно-следственных связей на субатомном уровне. Получается, что все в мире происходит случайно. Раз невозможно определить точное местоположение электрона, то как тогда подсчитать силу вероятного воздействия на него извне? «Я не могу поверить, — говорил Эйнштейн, — что Господь Бог играет со всем миром в кости».
И тем не менее Эйнштейну не удалось найти в принципе неопределенности каких-либо противоречий, а современная физика эту теорию полностью приняла.
Однако особых поводов для печали нет. Постоянная Планка очень мала, поэтому значением относительной неопределенности для тел, чьи размеры превышают размеры атома, можно пренебречь. Так что принцип неопределенности правит бал только лишь в субатомном мире.
Более того, принцип неопределенности вовсе не нанес науке никакого оскорбления. Даже наоборот, если во Вселенной существует пусть и очень малая, но приводящая к критическим последствиям доля неопределенности, следует отдать ученым дань за то, что они смогли ее обнаружить. Конечно же осознание пределов своего знания уже само по себе знание первостепенной важности.
Глава 7.
РАДИОАКТИВНОСТЬ
Уран
Итак, структура и свойства атома зависят в основном от количества электронов на его энергетических уровнях, а атомное ядро, диаметр которого колеблется в пределах от 10–13 до 10–12 см, является, казалось бы, крайне незначительной его частью. Если бы размеры атома увеличились до размеров Земли, то диаметр ядра такого атома составил бы всего около 210 метров.
И тем не менее масса ядра составляет более 99,9% от общей массы атома, и, несмотря на его малые размеры, ученые практически сразу определили, что атомное ядро также имеет внутреннюю структуру.
К обнаружению этой структуры привело открытие, сделанное французским физиком Антуаном Анри Беккерелем (1852–1908) в 1896 году. Именно в этом году было открыто рентгеновское излучение, и Беккерель, как и многие ученые того времени, активно изучал это явление.
Отец Беккереля (также известный физик) занимался изучением люминесцирующих материалов, т. е. веществ, которые поглощают свет определенной длины, а затем излучают уже более длинные волны[127]. Сам же Беккерель попытался выяснить, нет ли среди этих волн рентгеновских излучений.
Отец Беккереля работал, в частности, с сульфатом уранил-калия K2UO2(SO4)2. Молекула этого флуоресцентного вещества содержит один атом урана. Беккерель обнаружил, что флуоресцентное излучение сульфата уранил-калия, подвергнутого воздействию солнечных лучей, способно затемнять фотопластинку даже сквозь черную бумагу, что не под силу обычному свету.
А 1 марта 1896 года Беккерель сделал поистине выдающееся открытие. Он обнаружил, что сульфат уранил-калия затемняет фотопластинку и без «подзарядки» от солнечных лучей, то есть когда он не флуоресцирует. Это вещество испускает сильное проникающее излучение постоянно.
Как и рентгеновские лучи, это излучение обладало не только проникающей способностью, но и способностью ионизировать атмосферу. Для демонстрации этого Беккерель использовал электроскоп с золотыми листками. Это устройство состоит из двух тонких листов золотой фольги, подключенных к электроду, помещенному для изоляции от воздушных потоков в специальный корпус. Если поднести к выступающему над краем корпуса концу электрода заряженный предмет, то заряд этого предмета перейдет на золотые пластинки. Оба листа получают одноименный заряд и отталкиваются друг от друга, образуя фигуру в виде перевернутой латинской V.
Электроскоп с золотыми листками
Лепестки могут провисеть так довольно долго. Однако если воздух внутри корпуса ионизирован, то содержащиеся в таком воздухе ионы постепенно нейтрализуют заряд золотых листков, те перестанут отталкиваться друг от друга и вновь сойдутся вместе. Именно это и произошло, когда рядом с электроскопом поместили образец сульфата уранил-калия. Таким образом Беккерелю удалось доказать, что испускаемое этим веществом излучение является ионизирующим.
Физик Мария Склодовская-Кюри (1867–1934), наполовину полячка, наполовину француженка по национальности, в 1898 году назвала такое постоянное проникающее ионизирующее излучение радиоактивным. Исследования Кюри показали, что все соединения, содержавшие уран, были радиоактивными, причем чем больше урана содержится в веществе, тем выше его радиоактивность. Получается, что радиоактивным является сам атом урана, а не остальные входящие в соединения вещества. Опытным путем Кюри выяснила, что радиоактивным был и атом тория. (Атомное число атома урана 90, тория — 92, поэтому их структура очень сложна. В 1890-х годах уран и торий были самыми тяжелыми из известных на тот момент химических элементов.)
Вскоре обнаружилось, что излучение урана и тория не гомогенно. В магнитном поле одна часть радиоактивных лучей немного отклонялась в одном направлении, другая сильно отклонялась в противоположном, а оставшаяся не отклонялась вовсе. Эрнест Резерфорд (впоследствии он развил модель атома) назвал эти части радиационного излучения первыми тремя буквами греческого алфавита: альфа-лучи, бета-лучи и гамма-лучи. Эти три группы лучей отличаются друг от друга еще и проникающей способностью: гамма-лучи обладают такой же проникающей способностью, как и рентгеновские, проникающая способность бета-излучения гораздо ниже, а альфа-лучи такой способностью вообще практически не обладают.
По направлению отклонения бета-лучей Беккерель в 1899 году определил, что они, так же как и катодные лучи, состоят из отрицательно заряженных частиц. Дальнейшие исследования подтвердили, что бета-излучение является потоком быстро движущихся электронов, поэтому излучаемый радиоактивным веществом электрон принято называть бета-частицей.
Как я уже говорил, гамма-лучи не отклоняются электромагнитным полем, поэтому ученые предположили, что бета-излучение является электромагнитным по своей природе, однако длина его волны еще короче, чем у рентгеновского излучения. В 1914 году, подвергнув гамма-лучи дифракции на кристалле, Резерфорд доказал это.
Появление ядерной модели атома дало ключ к разгадке природы радиоактивного излучения. Стало понятно, что его источник нужно искать внутри атомного ядра. Дело в том, что разницы энергии электронных уровней недостаточно для возникновения гамма-лучей. Значит, существуют внутриядерные энергетические уровни, энергия которых и переходит в фотоны гамма-излучения.
Кроме того, рентгеновские и гамма-лучи не так уж и похожи друг на друга. В целом длина волны рентгеновских лучей выше, а у тяжелых элементов частота рентгеновского излучения превосходит частоту гамма-излучения того же атома.
Границей между рентгеновским и гамма-излучением является волна длиной 0,01 миллимикрона. Все волны короче 0,01 миллимикрона являются гамма-лучами, длиннее — рентгеновскими. Гамма-лучи расширили спектр известных электромагнитных волн, и на сегодняшний день его диапазон от самой короткой гамма-волны до самой длинной радиоволны равняется 60 октавам.
Альфа-частицы
А что такое альфа-лучи? Они отклоняются в противоположную от бета-лучей сторону, а это значит, что они состоят из положительно заряженных альфа-частиц. Тот факт, что альфа-лучи лишь незначительно отклоняются электромагнитным полем, которое сильно отклоняет бета-лучи, говорит о том, что масса альфа-частиц намного выше массы электронов.
Впрочем, такие прецеденты уже были. За десять лет до открытия радиоактивности были обнаружены другие потоки тяжелых частиц. В 1886 году Гольдштейн (тот самый, который дал катодной трубке ее название) впервые применил катодную трубку с перфорированным катодом. Он обнаружил, что, когда электроны, появляющиеся под действием электрического тока отрицательно заряженных катодных лучей, начинают двигаться от катода к аноду, сквозь отверстия в катоде в противоположном направлении устремляются лучи совсем другого излучения. Гольдштейн назвал эти лучи каналовыми, так как они проходили сквозь катод по каналам (т. е. через отверстия).
Направление туннельных лучей противоположно направлению катодных лучей, следовательно, они состоят из положительно заряженных частиц. Поэтому Джозеф Томсон и предложил называть их положительными лучами.
Можно предположить, что частицы позитивных лучей — это положительно заряженные аналоги частиц катодных лучей, «анодные лучи». Однако это не так. Немецкий физик Вильгельм Вин (1864–1928) измерил их e/m соотношение и на основе полученных низких значений предположил, что частицы положительных лучей были гораздо тяжелее электронов. Их масса соответствовала массе атомов.
Более того, значение e/m варьировалось в зависимости от вещества, из которого сделан катод, и от свойств остаточных газов в катодно-лучевой трубке. На модели атома Резерфорда основывалось предположение, что если катодные лучи состоят из «выбитых» из атомов электронов, то положительные лучи состоят из того, что от этих атомов осталось. То есть из положительно заряженных атомных ядер, а их масса варьируется в зависимости от элемента, из которого они получены[128].
Положительная частица с самым высоким соотношением e/m, а значит, самая легкая, являлась ядром атома водорода. Если принять за значение заряда +1, т. е. противоположное значение заряду электрона, тогда масса частицы должна превышать массу электрона в 1836 раз. В 1924 году Резерфорд прекратил безуспешные поиски частицы легче ядра водорода и предложил принять массу этого ядра за противоположное число электрона, несмотря на разницу в массе. (Подлинное противоположное число было открыто лишь 20 лет спустя, см. гл. 13.)
В 1920 году Резерфорд предложил назвать положительно заряженные частицы протонами (от греч. «первый»).
Резерфорд предположил, что ядра атомов всех элементов состоят, хотя бы частично, из ядра водорода. Об этом говорил еще Праут. Гипотеза Праута возродилась, приняв более сложную форму. Снова поднялся похоронивший в XIX веке гипотезу Праута вопрос о нецелочисленных атомных весах. Мы поговорим о нем чуть ниже.
Давайте вернемся к альфа-частицам. В 1906 году Резерфорд измерил значение соотношения e/m для этой частицы и обнаружил, это значение это эквивалентно значению e/m атома гелия. В 1909 году он разрешил этот вопрос окончательно, поместив радиоактивное вещество в тонкостенную трубку, находящуюся внутри толстостенной трубки, и откачав воздух из пространства между стенками. Альфа-частицы проникали сквозь тонкую стенку, однако задерживались в пространстве между стенками. Там они присоединяли электроны и превращались в обычные атомы. Проведенный через несколько дней спектроскопический анализ показал, что это были атомы гелия.
Атомный вес гелия равняется 4, таким образом, ядро гелия в 4 раза тяжелее ядра водорода. Если бы соотношение e/m ядра атома гелия было таким же, как и у ядра атома водорода, то положительный заряд ядра атома гелия был бы в 4 раза выше положительного заряда ядра атома водорода. Однако значение соотношения e/m ядра атома гелия в два раза меньше значения соотношения e/m протона. Итак, если масса протона (т. е. ядра атома водорода) равняется 1, а заряд 2–1, то масса альфа-частицы (а ядро атома гелия и есть альфа-частица) будет иметь массу 4 и заряд 4–2.
Казалось бы, раз альфа-частица имеет массу 4, то она должна состоять из 4 протонов. Однако она не может состоять из 4 протонов, так как в этом случае ее заряд будет +4. Впрочем, этот парадокс можно довольно легко объяснить. Радиоактивные вещества, помимо альфа-частиц, излучают еще и бета-частицы (электроны), поэтому можно предположить, что ядро, кроме протонов, содержит еще и электроны. Тогда получается, что альфа-частица состоит из 4 протонов и 2 электронов. Присутствие 2 электронов практически никак не повлияет на массу, которая так и останется равной 4, а общий заряд будет +2.
Существование электронов внутри ядра удовлетворяло ученых и с еще одной точки зрения. Дело в том, что атомное ядро не может состоять лишь из одних протонов, так как протоны имеют положительный заряд и, учитывая небольшие размеры ядра, они будут отталкиваться друг от друга с колоссальной силой. В то же время электроны внутри атомного ядра играют роль своеобразного «цемента», соединяющего протоны.
Подобные рассуждения привели к появлению протонно-электронной модели атомного ядра. Согласно этой модели, ядро атома состоит как из протонов, так и из электронов (за исключением ядра атома водорода, так как оно состоит лишь из одного протона, и поэтому ему не нужен электрон-связка).
Количество протонов в ядре любого атома равняется атомному весу этого элемента (А)[129], в то время как количество электронов равняется количеству, необходимому для погашения заряда всех протонов, минус атомное число элемнта (2). Таким образом, количество необходимых электронов равняется A – Z. Заряд же оставшихся протонов гасится электронами, находящимися за пределами ядра. Таким образом, в атоме, обладающем нейтральным зарядом, Z «внеядерных электронов».
Приведем несколько примеров. Атомный вес атома углерода равняется 12, атомное число — 6, значит, ядро атома углерода должно состоять из 12 протонов и 12–6, то есть 6 электронов. Атомный вес атома мышьяка — 75, атомное число — 33, значит, его ядро состоит из 75 протонов и 75–33, то есть 42 электронов. Атомный вес атома урана — 238, атомное число — 92, значит, ядро атома урана состоит из 238 протонов и 238–92, или 146 электронов. Даже атом водорода не является исключением из этого общего правила: его атомный вес равняется 1, атомное число — 1, значит, ядро атома водорода состоит из 1 протона, а количество электронов равняется 1 – 1, т. е. в ядре атома водорода электронов нет.
К сожалению, протонно-электронная модель атомного ядра не давала объяснения по целому ряду вопросов. Например, каково направление ядерного спина! Спин протона или электрона может быть либо +½, либо –½, а общая сумма спинов может быть целым числом (как положительным, так и отрицательным), положительным или отрицательным дробным числом, например (-)1/2 ,(-)3/2, (-)5/2 и т. д., или же равняться нулю.
Атомный вес атома азота равен 14, атомное число — 7, тогда согласно протонно-электронной модели ядро атома азота должно состоять из 14 протонов и 7 электронов, а общее количество частиц в ядре азота должно равняться 21. Сумма спинов (как положительных, так и отрицательных) 21 частицы в любом случае является дробным числом. Однако наблюдения показали — спин ядра азота является целым числом. Тогда ученые предположили, что сумма электронов и протонов в ядре азота не равна 21 и вообще не может равняться нечетному числу. С другой стороны, она не может быть и четным числом, так как атомный вес азота 14, а атомное число — 7.
Данные о ядерных спинах других элементов также противоречили протонно-электронной модели атомного ядра, что и привело к полному отказу от нее.
Обнаружение частиц
Так в чем же все-таки было дело? По одной из версий, электроны и протоны внутри ядра являлись единой частицей, так как из-за крошечных размеров ядра они находились в непосредственной близости и спаивались в одну частицу. Поскольку масса электрона ничтожно мала, масса такой частицы приблизительно равняется массе протона, а ее заряд равен 0, так как заряд протона (+1) погашается зарядом электрона (-1). Согласно этой версии, ядро атома азота состоит из 7 протонов и 7 «спаянных частиц», а общее число частиц равняется 14, то есть четному числу.
В 1920 году были высказаны первые предположения о том, что внутри атомного ядра присутствуют еще и незаряженные частицы, масса которых равна массе протонов. Однако в течение следующих 10 лет ученым так и не удалось найти никаких доказательств существования таких частиц. Но это еще не значило, что их не существует, так как физики знали, что незаряженная частица и должна быть неуловимой.
Обычные методы обнаружения основывались на ионизирующем свойстве субатомных частиц. Именно так, например, удалось обнаружить радиоактивное излучение с помощью электроскопа.
Когда ученые только-только начинали изучать радиоактивность, для обнаружения субатомных частиц использовались два устройства. Прототип первого был сконструирован в 1913 году немецким физиком Хансом Гейгером (1882–1945). В свое время Гейгер помогал Резерфорду проводить эксперименты, которые впоследствии привели к созданию ядерной модели атома. В 1928 году Гейгер совместно с немецким физиком С. Мюллером значительно усовершенствовал прибор, получивший название счетчик Гейгера — Мюллера.
Счетчик Гейгера — Мюллера представляет собой покрытую полосками металла стеклянную трубку, заполненную аргоном, в центре которой находится нить из тонкого металла. На трубку подается электрический ток: нить является анодом, а металлические полоски цилиндра — катодом, причем разность их потенциалов недостаточна для возникновения искры.
Когда в трубку попадает заряженная частица, она сталкивается с атомом аргона, выбивая из него один и более электронов. Под действием электрического тока эти электроны устремляются к аноду, ионизируя при этом другие атомы аргона. Появляются еще несколько электронов, которые ионизируют еще несколько атомов аргона, и т. д. То есть одна лишь заряженная частица запускает процесс ионизации аргона, и через небольшой период времени количество ионов становится достаточным для того, чтобы аргон начал проводить ток. Тогда в трубке возникает электрическая искра, и разность потенциалов трубки на мгновение становится равной нулю.
Электрический разряд, или импульс, можно преобразовать в звуковой щелчок, обозначающий проход одной субатомной частицы сквозь трубку. По количеству щелчков можно приблизительно определить на слух уровень радиационного излучения (поэтому счетчики Гейгера — Мюллера используются при разведке урана), а с помощью автоматики можно подсчитать и точное количество импульсов.
Если же нужно нечто большее, чем просто посчитать субатомные частицы, то можно воспользоваться прибором, изобретенным в 1911 году шотландским физиком Чарлзом Вильсоном (1869–1959). Ученый занимался исследованиями облакообразования и пришел к выводу, что капельки воды, из которых состоят облака, образуются вокруг частиц пыли и также могут образовываться вокруг ионов. Если же в воздухе нет ни пыли, ни ионов, то облака образовываться не будут, а воздух станет перенасыщенным, то есть водяного пара в таком воздухе будет больше, чем обычно.
Вильсон поместил некоторый объем насыщенного водяными парами воздуха в камеру с поршнем. Если поршень вытянуть, то воздух расширится и его температура понизится. Холодный воздух не может содержать такое же, что и теплый, количество водяного пара, и обычно при понижении температуры часть пара конденсируется в виде капелек воды. Однако при отсутствии пыли и ионов конденсация происходить не может, и холодный воздух становится перенасыщенным.
Если сквозь камеру с перенасыщенным воздухом проходит субатомная частица, то за ней создается след из ионов, вокруг которых образуются капли воды. По этим каплям можно определить траекторию полета субатомной частицы.
Можно многое узнать о частице по оставленному ею в камере Вильсона следу. Также по следу можно идентифицировать различные типы частиц. Например, альфа-частица образует множество ионов, а ее след является прямой линией, так как благодаря большой массе альфа-частица при столкновении с электронами не отклоняется, но она отклоняется, причем почти на 90°, только при столкновении с ядром. В результате столкновения ядро лишается части своих электронов, становясь ионизирующей частицей, и отскакивает в сторону. Поэтому четкий и прямой след альфа-частицы обычно раздваивается с одного конца. По длине оставленного альфа-частицей следа можно судить о ее исходной энергии.
Бета-частица, масса которой намного меньше массы альфа-частицы, гораздо легче меняет направление своего движения и образует меньше ионов. Она оставляет тонкий и волнообразный след. Гаммаи рентгеновские лучи выбивают из атомов электроны, и последние, становясь ионизирующими частицами, оставляют расходящиеся в разные стороны следы. Поэтому след гамма- и рентгеновского излучения нечеткий, размытый и «пушистый».
Если поместить камеру Вильсона между двумя разноименными полюсами магнита, то заряженные частицы будут двигаться по криволинейным траекториям, о чем можно будет судить по оставляемым ими следам. По направлению кривой можно определить, является заряд частицы положительным или отрицательным, а по остроте кривой можно вычислить значение соотношения e/m.
Камера Вильсона
Для образования электронов необходимо, чтобы летящая частица обладала электрическим зарядом. Положительно заряженная частица притягивает электроны встречающихся на пути атомов, а отрицательно заряженная будет их отталкивать. Незаряженная частица не притягивает, не отталкивает электроны и не образует ионов. Таким образом, такую незаряженную частицу невозможно обнаружить с помощью счетчика Гейгера — Мюллера или камеры Вильсона (и любого другого разработанного позже устройства). Если незаряженные частицы существуют, то их можно обнаружить лишь косвенно.
Именно поэтому ученым в течение 10 лет не удавалось обнаружить нейтральную частицу и разработать более совершенную модель атома, чем протонно-электронная.
Нейтрон
В начале 1930 года появились данные о том, что под действием альфа-лучей бериллий начинает испускать какой-то неизвестный тип излучения. Это излучение обладало высокой проникающей способностью и не меняло своего направления под действием магнитного поля. Сначала решили, что это гамма-лучи. Однако новое излучение не являлось гамма-лучами, так как не обладало ионизирующим свойством и его невозможно было обнаружить с помощью электроскопа.
Это излучение действительно невозможно было обнаружить напрямую. Однако оно выбивало протоны из парафина, что и дало возможность обнаружить его косвенно.
В 1932 году английский физик Джеймс Чедвик (1891–1974) дал этому феномену удовлетворительное объяснение. Электромагнитное излучение может сдвинуть разве что легкие электроны, а не тяжелые протоны. Выбивать же протоны с такой легкостью может лишь какая-то другая частица, масса которой соизмерима с массой протона. Раз эта частица не ионизирует воздух, значит, она не несет электрического заряда. Т. е. это и есть та самая частица, которую ученые ищут вот уже более 10 лет. Так как заряд частицы нейтрален, она получила название нейтрон.
Итак, ученым удалось обнаружить нейтрон, и Гейзенберг тут же предложил протонно-нейтронную модель атома. Согласно этой модели, ядро состоит только из протонов и нейтронов. Масса нейтрона равна массе протона, а сумма протонов (p) и нейтронов (n) равняется атомному весу (A). С другой стороны, заряд ядра зависит только от положительно заряженных протонов, поэтому заряд ядра равняется атомному числу (Z). Таким образом:
p + п = А, (Уравнение 7.1)
p = Z. (Уравнение 7.2)
Количество нейтронов можно определить путем вычитания уравнения 7.1 из уравнения 7.2:
n = А — Z (Уравнение 7.3)
Новая модель давала полное представление о структуре ядра атомов тех элементов, чьи атомные веса приблизительно равнялись целым числам.
Ядро атома водорода (А = 1, Z = 1) состоит только из одного протона; ядро атома гелия (А = 3, Z = 2) — из двух протонов и двух нейтронов; ядро атома мышьяка (А = 75, Z = 33) — из 33 протонов и 42 нейтронов; ядро атома урана (А = 238, Z = 92) — из 92 протонов и 146 нейтронов.
Протонно-нейтронная модель смогла дать ответы на те вопросы, на которые не могла дать протонно-электронная модель. Например, ядро атома азота (А = 14, Z = 7) состоит из 7 протонов и 7 нейтронов, итого из 14 частиц. Спин нейтрона такой же, как и протона, +½ или –½, и значение общего спина 14 (и любого другого количества) частиц будет целым числом.
Сегодня протонно-нейтронная модель является общепризнанной, а протоны и нейтроны вместе называют нуклонами, то есть «частицами атомного ядра».
Конечно же и эта модель не дает ответа на все вопросы. Например, если ядро состоит только лишь из протонов и электронов, то откуда же берутся электроны бета-лучей, испускаемых радиоактивными веществами? Ведь именно существование бета-лучей и дало повод считать, что в ядре есть электроны.
Ответ на этот вопрос дают свойства нейтронов, не имеющие ничего общего со свойствами протонов и электронов. И электроны и протоны являются устойчивыми частицами. Это значит, что если Вселенная состояла бы из одних лишь электронов и протонов, то оставалась бы неизменной. Вселенная обязана своим современным обликом именно нейтрону, неустойчивой частице.
В изоляции нейтрон через какое-то время распадается на протон и электрон. (Пока я даю неполное описание процесса распада, более подробно см. в гл. 14.)
Мы можем записать этот процесс символами (надстрочный индекс обозначает заряд):
n0 → p+ + e –. (Уравнение 7.4)
Эта формула иллюстрирует одну очень важную вещь: электрический заряд не создается. Весь опыт изучения субатомных частиц показывает, что нейтрон не может просто так вот стать протоном, так как заряд, как положительный, так и отрицательный, у незаряженной частицы не может появиться ниоткуда. Поэтому нейтрон образует положительно заряженный протон и отрицательно заряженный электрон, таким образом, общий заряд двух образовавшихся частиц равен нулю.
Закон сохранения электрического заряда гласит, что в закрытой системе общий заряд частиц в результате изменений внутри системы не меняется. Ученые выявили это еще во времена изучения электричества (см. ч. II), когда о существовании субатомных частиц даже и не подозревали.
Однако внутри ядра нейтрон, как правило, стабилен (причины см. в гл. 14). Поэтому атом азота стабилен, даже несмотря на то, что в его ядре есть нейтроны и их количество, как и количество протонов, остается равным 7.[130]
С другой стороны, нейтроны некоторых атомов все же обладают некоей долей неустойчивости, и в некоторых случаях такой нейтрон распадается на протон и электрон. При этом протон остается в ядре, а электрон становится бета-частицей и покидает ядро. Несмотря на то что бета-частицы излучаются ядром, это не значит, что они являются его составной частью. Бета-частицы образуются в момент выхода из ядра.
Дата: 2019-07-24, просмотров: 246.