Данный вид задач представляет собой сложный вид, т.к. эти задачи студенты решают очень плохо. После объяснения решения таких задач целесообразно порешать аналогичные задачи как индивидуально, так и со всеми вместе (групповым методом).
Для решения задач на смеси и сплавы, на концентрации нужно уметь рассуждать и решать задачи на дроби и проценты, на составление уравнений и их систем. Эти задачи решаются арифметически, применением линейного уравнения и их систем. Рассмотрим задачи, решаемые арифметическим способом.
Приступая к решению задач, связанных с понятиями «концентрация» и «процентное содержание», необходимо объяснить учащимся, что обычно в условиях таких задач речь идет о составлении сплавов, растворов, смесей из двух или нескольких веществ. При решении таких задач принимаются следующие основные допущения:
· Все получающиеся сплавы или смеси однородны;
· При слиянии двух растворов, имеющих объемы и , получается смесь , объем которой равен V = + ;
· При слиянии двух растворов масса смеси равняется сумме масс, составляющих ее компонентов.
Объемной концентрацией компонента А называется отношение объема чистого компонента ( ) в растворе ко всему объему смеси( ):
= = , . (5.5.1.)
Объемным процентным содержанием компонента А называется величина (5.5.1), то есть концентрация этого вещества, выраженная в процентах.
(5.5.2.)
Аналогично определяются массовая концентрация и процентное содержание: отношение массы чистого вещества А в сплаве к массе всего сплава. Под процентным содержанием вещества понимается часть, которую составляет вес этого вещества от веса всего соединения.
Задача 5.5.3. Для проведения опыта научный сотрудник химической лаборатории смешал 4% раствор некоторого химического вещества и 10% раствора этого же вещества и получил 75 мл. 8% раствора. Сколько миллилитров 4% раствора и сколько 10% раствора было взято.
Решение: Обозначим через x – количество 4% раствора, а через y – количество 10% раствора. Запишем первое уравнение системы, т.к. должно получится 75 мл. раствора:
x + y=75.
Второе уравнение системы связывает количество соли в 4%, 10% и получившимся растворах:
0,04x + 0,1y =0,08(x+y).
Решим получившуюся систему уравнений:
x+y=75,
0,04x+0.1y=0,08(x+y);
x=25,
y=50.
Значит: 25 мл взяли 4% раствора и 50 мл 10% раствора.
Ответ: 25 мл; 50 мл.
Задача 5.5.4. Кусок сплава золота и серебра весом 3 кг содержит 30% золота. Сколько кг чистого золота нужно прибавить к этому куску, чтобы получившийся новый сплав содержал 40% золота?
Решение: Пусть добавили x кг чистого золота;
3 Х 0,3=0,9(кг) – чистого золота было в сплаве.
Всего чистого золота стало (x+0,9) кг,
а сплав массой (кг) – чистого золота.
Составим и решим уравнение: , x=0,5, т. е. 0,5 (кг) – надо добавить чистого золота.
Ответ: 0,5 кг.
Задача 5.5.5. Даны два куска с различным содержанием олова. Первый, массой 300 г, содержит 20% олова, Второй, массой 200 г, содержит 40% олова. Сколько процентов олова будет содержать сплав, полученный из этих кусков?
Решение: До сплавления в двух кусках было 300·20/100+200·40/100=140 г олова. После сплавления кусок массой 200+300=500 г будет содержать 140·100/500 (%) = 28(%) олова. Ответ: 28%.
Задача 5.5.6: Имеется 2 раствора поваренной соли разной концентрации. Если слить вместе 100г первого раствора и 200г второго раствора, то получится 50%-ный раствор. Если же слить вместе 300г первого раствора и 200 г второго, то получится 42%-ный раствор. Найти концентрацию второго раствора.
Решение: Пусть процентное содержание соли в первом и втором растворах p% и q% соответственно, тогда по условиям задачи можно составить два уравнения:
100 p/100 + 200 q/100=50· (100+200)/100
300 p/100 + 200 q/100=42· (300+200)/100.
Упростив эти уравнения и решив систему, получим p=30 и q=60. Следовательно, концентрация второго раствора равна 60%.
Ответ: 60%.
В данной методической разработке рассмотрены основные методы решения задач на проценты и различные задачи на составление уравнений, что является важной частью изучение математики. Здесь рассмотрены задачи на составление « смесей » и на такое понятие как « концентрация ».
Хочется отметить, что тема работы очень актуальна, тем более в наше время, когда на первое место в отношениях становится экономика, а проценты приобрели широкое распространение в нашей жизни, а в школах уделяется мало время на изучения процентов, да и сам материал рассматривается скупо, не полномасштабно.
Можно сделать вывод, что эту тему не только можно, но и нужно вводить на факультативных занятиях по математике и на консультациях, а так же отводить время для решения задач на проценты на уроках.
Список использованной литературы :
1. Автономова Т.В. , С.Б. Верченко, В.А. Гусев и др.;25. Практикум по методике преподавания математики в средней школе: Учеб. пособие для студентов физ.-мат. пед. ин-тов/Под ред. В.И.Мишина.– М.: Просвещение, 1993.
2. Виленкин Н.Я. , Жохов В.И., Чесноков А.С. , Шварцбурд С.И. Математика: Учеб. для 6 кл. общеобразоват. учреждений/ . – М.: Мнемозина, 2001
3. Виленкин Н.Я., А.С. Чесносков, и другие. « математика 5 » Москва «просвещение» 2008 г.
4. Дорофеев Г.В., Кузнецова Л.В., Минаева С.С., Суворова С.Б. Изучение процентов в основной школе//Математика в школе. – 2002. – №1 – с. 19 –24.
5. Журнал « Математика » № 3 Москва 2004 г.
6. Журнал « Медицина » Как быть здоровым М.: , 2009
7. Королькова Г.В. . « Методическое пособие по математике » Волгоград 2006 г.
8. Лурье М.В. , Б.И. Александров. « Задачи на составление уравнений».
9. Максимова В.Н. Проблемный подход к обучению в школе Методическое пособие по спецкурсу Л.2003.
10. Матюшкин А.М. Проблемные ситуации в мышлении и обучении М. Педагогика 2007.
11. Поляков С. Зачем нужна математика тем, кому она не нужна? Школьное обозрение. – 2002. – №4. – с. 41 – 43
12. ЕГЭ. 3000 задач с ответами по математике. Под редакцией: А.Л. Семенова, И. В. Ященко. Разработано МИОО. Москва, издательство «Экзамен» 2012 г.
13. Самойлик Г. История математики на уроках. Проценты// Математика. – 2002 – № 36 – с. 3.
Дата: 2019-07-24, просмотров: 280.