Поляризованным называется свет, в котором направления колебания вектора упорядочены каким-либо образом.
Свет представляет собой суммарное электромагнитное излучение множества атомов. Атомы излучают световые волна независимо друг от друга, поэтому световая волна, излучаемая телом в целом, характеризуется всевозможными равновероятными колебаниями светового вектора . Свет со всевозможными равновероятными ориентациями вектора называется естественным. Свет, в котором имеется преимущественное направление колебаний вектора и незначительная амплитуда колебаний вектора в других направлениях, называется частично поляризованным. В плоско поляризованном свете плоскость, в которой колеблется вектор , называется плоскостью поляризации, плоскость, в которой колеблется вектор , называется плоскостью колебаний.
Поляризованный свет можно получить из естественного с помощью поляризаторов - анизотропных кристаллов, пропускающих свет только в одном направлении (исландский шпат, кварц, турмалин).
Поляризатор, анализирующий в какой плоскости поляризован свет, называется анализатором.
Закон Малюса: Интенсивность света, прошедшего через поляризатор, прямо пропорциональна произведению интенсивности падающего плоско поляризованного света I0 и квадрату косинуса угла между плоскостью падающего света и плоскостью поляризатора.
Если на поляризатор падает естественный свет, то интенсивность вышедшего из поляризатора света I0 равна половине Iест, и тогда из анализатора выйдет
Законы излучения абсолютно черного тела. Закон Стефана-Больцмана, закон Вина.
Закон Стефана-Больцмана.
Чтобы понять, как действует этот закон, представьте себе атом, излучающий свет в недрах Солнца. Свет тут же поглощается другим атомом, излучается им повторно — и таким образом передается по цепочке от атома к атому, благодаря чему вся система находится в состоянии энергетического равновесия. В равновесном состоянии свет строго определенной частоты поглощается одним атомом в одном месте одновременно с испусканием света той же частоты другим атомом в другом месте. В результате интенсивность света каждой длины волны спектра остается неизменной.
Температура внутри Солнца падает по мере удаления от его центра. Поэтому, по мере движения по направлению к поверхности, спектр светового излучения оказывается соответствующим более высоким температурам, чем температура окружающий среды. В результате, при повторном излучении, согласно закону Стефана—Больцмана, оно будет происходить на более низких энергиях и частотах, но при этом, в силу закона сохранения энергии, будет излучаться большее число фотонов. Таким образом, к моменту достижения им поверхности спектральное распределение будет соответствовать температуре поверхности Солнца (около 5 800 К), а не температуре в центре Солнца (около 15 000 000 К).
Энергия, поступившая к поверхности Солнца (или к поверхности любого горячего объекта), покидает его в виде излучения. Закон Стефана—Больцмана как раз и говорит нам, какова излученная энергия. Этот закон записывается так:
E = σT 4
где Т — температура (в кельвинах), а σ — постоянная Больцмана. Из формулы видно, что при повышении температуры светимость тела не просто возрастает — она возрастает в значительно большей степени. Увеличьте температуру вдвое, и светимость возрастет в 16 раз!
Первый закон излучения Вина
В 1893 году Вильгельм Вин, воспользовавшись, помимо классической термодинамики, электромагнитной теорией света, вывел следующую формулу:
· {\displaystyle u_{\nu }=\nu ^{3}f\left({\frac {\nu }{T}}\right),}
где uν — плотность энергии излучения, ν — частота излучения, T —температура излучающего тела, f — функция, зависящая только от отношения частоты к температуре.
Вид этой функции невозможно установить, исходя только из термодинамических соображений.
Первая формула Вина справедлива для всех частот. Любая более конкретная формула (например, закон Планка) должна удовлетворять первой формуле Вина.
Из первой формулы Вина можно вывести закон смещения Вина (закон максимума) и закон Стефана — Больцмана, но нельзя найти значения постоянных, входящих в эти законы.
Исторически именно первый закон Вина назывался законом смещения, но в настоящее время термином «закон смещения Вина» называют закон максимума.
Второй закон излучения Вина
В 1896 году Вин на основе дополнительных предположений вывел второй закон:
{\displaystyle u_{\nu }=C_{1}\nu ^{3}e^{-C_{2}{\frac {\nu }{T}}},}
где C1, C2 — константы. Опыт показывает, что вторая формула Вина справедлива лишь в пределе высоких частот (малых длин волн). Она является частным конкретным случаем первого закона Вина.
Позже Макс Планк показал, что второй закон Вина следует из закона Планка для больших энергий квантов, а также нашёл постоянные C1 и C2. С учётом этого, второй закон Вина можно записать в виде:
{\displaystyle u_{\nu }={\frac {2\pi h\nu ^{3}}{c^{3}}}e^{-h\nu /kT},}
где h — постоянная Планка, k — постоянная Больцмана, c — скорость света в вакууме.
{\displaystyle R={\frac {U}{I}},}
Дата: 2019-05-29, просмотров: 232.