Действующее значение переменного тока равно такому постоянному току, который, проходя через то же сопротивление, что и переменный ток, за то же время выделяет такое же количество энергии
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Электроизмерительные приборы (амперметры, вольтметры), включенные в цепь переменного тока, показывают действующие значения тока или напряжения. При построении векторных диаграмм удобнее откладывать не амплитудные, а действующие значения векторов. Для этого длины векторов уменьшают в √2 раз. От этого расположение векторов на диаграмме не изменяется.

Рассмотрим цепь, состоящую из последовательно соединенных активного сопротивления , катушки индуктивности , конденсатора и источника переменного напряжения U (рис. 7.10). Найдем силу тока , который установится в цепи при напряжении, изменяющемся по закону .

 

В случае постоянного тока полное сопротивление при последовательном соединении равно сумме сопротивлений всех элементов цепи. Это обусловлено тем, что полная разность потенциалов при последовательном соединении элементов цепи равна сумме падений напряжения на отдельных элементах. В случае переменного тока ситуация более сложная. Ток во всех элементах цепи имеет одно и тоже значение в один и тот же момент времени и одинаковую фазу. Напряжение же на конденсаторе опережает ток по фазе на и, следовательно, опережает на напряжение на сопротивлении, соединенном последовательно с конденсатором. В то же время напряжение на катушке индуктивности отстает по фазе от тока на и, следовательно, отстает по фазе на от напряжения на конденсаторе. Поэтому полное напряжение на катушке индуктивности и конденсаторе равно разности напряжений на них и опережает напряжение на сопротивлении по фазе на . Полная разность потенциалов во всей цепи равна сумме этих двух синусоидально изменяющихся напряжений: результирующего напряжения на катушке индуктивности и конденсаторе и напряжения на активном сопротивлении. Такое напряжение тоже меняется по закону синуса, а его амплитуда равна модулю векторной суммы амплитуд напряжений на всех элементах цепи.

 

Если в цепи переменного тока имеются нагрузки разных типов, то закон Ома выполняется только для максимальных (амплитудных) и действующих значений тока и напряжения.

В этом случае:

- полное сопротивление переменному току.

Учитывая, что отношение напряжения к силе тока – это сопротивление, и подставляя конкретные выражения для соответствующих сопротивлений, получим:

Сдвиг фаз в цепи переменного тока определяется характером нагрузки:

или

30.Полупроводники. Собственная и примесная проводимость полупроводников: p-n переход. Полупроводниковые приборы.

Полупроводники — это вещества, удельное сопротивление которых убывает с повышением температуры, наличием примесей, изменением освещенности. По этим свойствам они разительно отличаются от металлов. Обычно к полупроводникам относятся кристаллы, в которых для освобождения электрона требуется энергия не более 1,5—2 эВ. Типичными полупроводниками являются кристаллы германия и кремния, в которых атомы объединены ковалентной связью. Природа этой связи позволяет объяснить указанные выше характерные свойства. При нагревании полупроводников их атомы ионизируются. Освободившиеся электроны не могут быть захвачены соседними атомами, так как все их валентные связи насыщены. Свободные электроны под действием внешнего электрического поля могут перемещаться в кристалле, создавая электронный ток проводимости. Удаление электрона с внешней оболочки одного из атомов в кристаллической решетке приводит к образованию положительнго иона. Этот ион может нейтрализоваться, захватив электрон. Далее, в результате переходов связанных электронов от атомов к положительным ионам происходит процесс хаотического перемещения в кристалле места с недостающим электроном — «дырки». Внешне этот процесс хаотического перемещения связанных электронов воспринимается как перемещение поло-жительного заряда. При помещении кристалла в электрическое поле возникает упорядоченное движение «дырок» — дырочный ток проводимости.

В идеальном кристалле ток создается равным количеством электронов и «дырок». Такой тип проводимости называют собственной проводимостью полупроводников. При повышении температуры (или освещенности) собственная проводимость проводников увеличивается.

На проводимость полупроводников большое влияние оказывают примеси. Примеси бывают донорные и акцепторные. Донорная примесь — это примесь с большей, чем у кристалла, валентностью. При добавлении такой примеси в полупроводнике образуются дополнительные свободные электроны. Именно поэтому примесь называется донорной. Преобладает электронная проводимость, а полупроводник называют полупроводником n-типа. Например, для кремния с валентностью n = 4 донорной примесью является мышьяк с валентностью n = 5. Каждый атом примеси мышьяка приведет к образованию одного электрона проводимости.

Акцепторная примесь — это примесь с меньшей чем у кристалла валентностью. При добавлении такой примеси в полупроводнике образуется лишнее количество «дырок». Преобладает «дырочная» проводимость, а полупроводник называют полупроводником p-типа. Например, для кремния акцепторной примесью является индий с валентностью n = 3. Каждый атом индия приведет к образованию лишней «дырки».

Принцип действия большинства полупроводниковых приборов основан на свойствах р—n-перехода. При приведении в контакт двух полупроводниковых приборов р-типа и n-типа в месте контакта начинается диффузия электронов из n-области в p-область, а «дырок» — наоборот, из р- в n-область. Этот процесс будет не бесконечным во времени, так как образуется запирающий слой, который будет препятствовать дальнейшей диффузии электронов и «дырок».

р—n-Контакт полупроводников, подобно вакуумному диоду, обладает односторонней проводимостью: если к р-области подключить «+» источника тока, а к n-области «-» источника тока, то запирающий слой разрушится и р—n-контакт будет проводить ток, электроны из n-области пойдут в p-область, а «дырки» из p-области в n-область (рис. 22). В первом случае ток не равен нулю, во втором — ток равен нулю. Это означает, что если к р-области подключить «-» источника, а к n-области — «+» источника тока, то запирающий слой расширится и тока не будет.

Полупроводниковый диод состоит из контакта двух полупроводников р- и n-типа. Полупроводниковые диоды имеют небольшие размеры и массу, длительный срок службы, высокую механическую прочность, высокий коэффициент полезного действия; их недостатком является зависимость сопротивления от температуры.

В радиоэлектронике применяется также еще один полупроводниковый прибор: транзистор, который был изобретен в 1948 г. В основе триода лежит не один, а два р—n-перехода. Основное применение транзистора — это использование его в качестве усилителя слабых сигналов по току и напряжению, а полупроводниковый диод применяется в качестве выпрямителя тока.

После открытия транзистора наступил качественно новый этап развития электроники — микроэлектроники, поднявший на качественно иную ступень развитие электронной техники, систем связи, автоматики. Микроэлектроника занимается разработкой интегральных микросхем и принципов их применения. Интегральной микросхемой называют совокупность большого числа взаимосвязанных компонентов — транзисторов, диодов, резисторов, соединительных проводов, изготовленных в едином технологическом процессе. В результате этого процесса на одном кристалле одновременно создается несколько тысяч транзисторов, конденсаторов, резисторов и диодов, до 3500 элементов. Размеры отдельных элементов микросхемы могут быть 2—5 мкм, погрешность при их нанесении не должна превышать 0,2 мкм. Микропроцессор современной ЭВМ, размещенный на. кристалле кремния размером 6x6 мм, содержит несколько десятков или даже сотен тысяч транзисторов.

Однако в технике применяются также полупроводниковые приборы без р—n-перехода. Например, терморезисторы (для измерения температуры), фоторезисторы (в фотореле, аварийных выключателях, в дистанционных управлениях телевизорами и видео-магнитофонами).

 


Дата: 2019-05-29, просмотров: 250.