Следующая теорема оправдывает элементарное определение плоскости в школьном курсе геометрии как такого множества точек, что каждая прямая, имеющая с ним две общие точки, вся принадлежит .
Теорема 4.8. для того, чтобы непустая часть пространства была линейным аффинным многообразием, необходимо и достаточно, чтобы
a) если - любая прямая, соединяющая две точки , содержалась в ;
b) если - эвибарицентр любых трех точек лежал в .
Доказательство. Нам уже известна необходимость этого условия. Для доказательства достаточности выберем в точку и покажем, что есть ВПП пространства .
a) Предположив, что , установим прежде всего, что условия и влекут .
Действительно, по предположению существует точка , такая, что . Точка , определенная условием , принадлежит прямой (АВ) и, значит, , откуда следует, что .
Рассмотрим далее два любых вектора и в и выберем (что возможно, так как не сводится к ). Точки и (см. рис. 1) принадлежат соответственно прямым (АВ) и (АС), а поэтому и . Следовательно, точка принадлежит , откуда . Итак есть ВПП в .
Рис. 1
b) Если , то тривиальным образом влечет (так как может принимать только два значения 0, 1). Если , - два вектора из , то точка , определяемая условием , есть эквибарицентр , откуда и вытекает наше утверждение.
Аффинные и полуаффинные отображения
Определение 5.1. Пусть ℰ, - два аффинных пространства, ассоциированных соответственно с векторными пространствами , .
Отображение ℰ называется полуаффинным (соответственно аффинным), если в ℰ существует такая точка , что отображение , полулинейно (соответственно линейно).
Предложение 5.1. Если в ℰ существует точка , удовлетворяющая вышеуказанным требованиям, то им удовлетворяет любая точка ℰ и отображение не зависит от .
Доказательство. Для любой пары ℰ имеем в силу линейности
,
что и доказывает требуемое.
Обозначения. Отображение обозначается и называется полулинейной (соответственно линейной) частью .
Истолкование. Фиксируем в ℰ некоторую точку и снабдим , векторными структурами, принимая за начало в ℰ точку , а в - точку . Тогда будет полуаффинным (соответственно аффинным) в том и только том случае, если - полулинейное (соответственно линейное) отображение ℰА в .
В частности, изучение полуаффинных (соответственно аффинных) отображений пространства ℰ в себя, допускающих неподвижную точку , сводится к изучению полулинейных (соответственно линейных) отображений ℰ А в себя.
Так обстоит дело в случае геометрий, проектирований и симметрий (см. ниже).
Важно заметить, что полуаффинные (соответственно аффинные) отображения полностью определяется своей полулинейной (соответственно линейной) частью и образом одной точки.
Если , - два векторных пространства, то полуаффинное (соответственно аффинное) отображение и есть отображение вида , где полулинейно (соответственно линейно), а - постоянный элемент.
Непосредственные следствия. Если ℰ полуаффинно, то
1) Образ ЛАМ в ℰ есть ЛАМ в .
2) Прообраз ЛАМ в есть ЛАМ в ℰ или пустое множество.
3) Для любой системы взвешенных точек ℰ образ барицентра есть барицентр , где обозначает изоморфизм тел, ассоциированных с .
Применение аффинных реперов
Теорема 5.2. Пусть ℰ, - аффинные пространства над телами , , - изоморфизм на , - аффинный репер в ℰ и - семейство точек , индексированное тем же множеством индексов .
Тогда существует единственное полуаффинное отображение пространства ℰ в , ассоциированное с изоморфизмом , такое, что для всех .
Более того, биективно (соответственно инъективно, сюръективно) тогда и только тогда, когда семейство есть аффинный репер (соответственно свободное семейство, семейство образующих) для .
Доказательство. Вернемся к теореме , взяв одну из точек в качестве начала в ℰ, а соответствующую точку - в ; отображение определяется равенством
для любого конечного подмножества и любой системы скаляров , таких, что, .
В частности, аффинное отображение ℰ в определяется заданием образа аффинного репера из ℰ.
Приложение: уравнение аффинной гиперплоскости или ЛАМ
Опираясь на исследование, проведенное в параграфе II.6, легко получаем
Предложение 5.3. Пусть ℰ- аффинное пространство над телом . Тогда
a) Если ℰ - непостоянное аффинное отображение, то - аффинная гиперплоскость в ℰ с направлением .
b) Обратно, если - аффинная гиперплоскость в ℰ, то существует аффинное отображение ℰ , такое, что , и все аффинные отображения ℰ в с этим свойством суть отображения , где .
Если ℰ- аффинное пространство конечной размерности , то каждое ЛАМ размерности в ℰ определяется системой уравнений вида , где - аффинные отображения ℰ в , линейные части которых независимы.
Характеризация аффинных отображений
Теорема 5.4. Пусть ℰ - два аффинных пространства над одним и тем же телом . Для того, чтобы отображение ℰ было аффинным, необходимо и достаточно, чтобы
a) при
ℰ ℰ
;
b) при образ эквибарицентра любых трех точек ℰ был эквибарицентром их образов.
Доказательство (аналогичное случаю теоремы 4.8.).
a) При фиксированной точке ℰ соотношение a) показывает, что для любого вектора направляющего пространства имеем
.
Отображение удовлетворяет, следовательно, условию .
Чтобы доказать, что выполняется и условие для любых , выберем такие , что , и , определим точки , условиями , . Применяя условие a), получим тогда ,
откуда
.
Можно также сформулировать теорему 5.4. так: отображение ℰ в является аффинным тогда и только тогда, когда его ограничение на любую аффинную прямую в ℰ аффинно.
В дальнейшем мы дадим чисто геометрическую характеристику полуаффинных отображений.
Дата: 2019-05-29, просмотров: 242.