Базы и базирование. Три категории баз
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Понятие о базировании. Классификация баз.

В общем случае базированием называется придание заготовке или изделию требуемого положения относительно выбранной системы координат (ГОСТ 21495—76). Применительно к проектированию или сборке под базированием понимают придание детали или сбороч­ной единице требуемого положения относительно других деталей изделия. При механической обработке заготовок на станках бази­рованием принято считать придание заготовке требуемого положе­ния относительно элементов станка, определяющих траектории движения подачи обрабатывающего инструмента.

Для выполнения технологической операции требуется не только осуществить базирование обрабатываемой заготовки, но также не­обходимо обеспечить ее неподвижность относительно приспособления на весь период обработки, гарантирующую сохранение неизменной ориентировки заготовки и нормальное протекание процесса обра­ботки. В связи с этим при установке заготовок в приспособлениях решаются две различные задачи: ориентировка, осуществляемая базированием, и создание неподвижности, достигаемое закреплением заготовок. Несмотря на различие этих задач, они решаются теорети­чески одинаковыми методами, т. е. посредством наложения опреде­ленных ограничений (связей) на возможные перемещения заготовки (механической системы) в пространстве.

Все база классифицируются по следующим признакам:

1. по назначению различают:конструкторские, основные и вспомогательные, технологические и измерительные

2. По количеству лишающих свойств: Центровочные, направляющие, опорные, двойные направляющие, двойные опорные.

3. По характеру проявления: явные и скрытые

В общем случае базой называется поверхность, линия или точка детали, по отношению к которой ориентируются другие детали изделия или другие поверхности данной заготовки при их констру­ировании, сборке, механической обработке или измерении. По своему назначению и области применения в машиностроении базы подраз­деляются на конструкторские, измерительные и технологические, используемые при сборке или при механической обработке.

Конструкторская база — это база, используемая для определе­ния положения детали или сборочной единицы в изделии (ГОСТ 21495—76). В обычной практике конструкторской работы конструкторской базой называется поверхность, линия или точка детали, по отношению к которым определяются на чертеже расчет­ные положения других деталей или сборочных единиц изделия, а также других поверхностей и геометрических элементов данной детали.

Конструкторские базы подразделяются на основные и вспомога­тельные. Основной называется конструкторская база, принадлежа­щая данной детали или сборочной единице, используемая для определения ее положения в изделии. Конструкторская база принадлежащая данной детали или сборочной единице, использу­емая для определения положения присоединяемого к ней изделия называется вспомогательной базой (ГОСТ 21495—76).

Измерительной базой называется поверхность, линия или точка, от которых производится отсчет выполняемых размеров при обработке или измерении заготовок, а также при проверке взаимного расположения поверхностей деталей или элементов изделия (параллельности, перпендикулярности, соосности и др.).

При использовании в качестве измерительных баз материальных поверхностей изделий проверку производят обычными прямыми методами измерения; при использовании геометрических элементов (биссектрис углов, осевых линий, плоскостей симметрии и других условных или «скрытых» баз) измерительные базы материализуются с помощью вспомогательных деталей (штырей, пальцев, натянутых струн, отвесов), оптических установок (коллиматоров) и других устройств.

Технологическая база — это база, используемая для определения положения заготовки или изделия в процессе изготовления или ремонта (ГОСТ 21495—76).

Технологической базой, используемой при сборке, называется поверхность, линия или точка детали или сборочной единицы, относительно которых ориентируются другие детали или сборочные единицы изделия.

Технологической базой, используемой при обработке заготовок на станках, называется поверхность, линия или точка заготовки, относительно которых ориентируются ее поверхности, обрабаты­ваемые на данном установе.

В качестве технологических баз используют также разметочные линии и точки, нанесенные на материальные поверхности заготовок для выверки положения последних относительно устройств станка, определяющих траекторию движения режущих инструментов.

По особенностям применения технологические базы, использу­емые при механической обработке, подразделяются на контактные, настроечные и проверочные.

Контактными базами называются технологические базы, непо­средственно соприкасающиеся с соответствующими установочными поверхностями приспособления или станка.

При обработке заготовок по принципу автоматического получе­ния размеров требуемую точность можно обеспечить сравнительно легко посредством настройки станка относительно контактных техно­логических баз заготовки или соприкасающихся с ними опорных поверхностей приспособлений.

Настроечные базы. Для осуществления настройки станка относительно определен­ных поверхностей заготовки необходимо, чтобы эти поверхности занимали на станке при смене заготовок неизменное положение относительно упоров станка, определяющих конечное положение обрабатывающего инструмента. К таким поверхностям отно­сятся опорные поверхности заготовки, что и предопределяет широкое их использование в крупносерийном производстве в каче­стве опорных технологических баз. Такими же поверхностями являются поверхности, образуемые на заготовке при данном установе и связанные с другими обрабатываемыми поверхностями не­посредственными размерами.

Проверочные технологические базы. При обработке заготовок в условиях серийного и единичного производства, а также при сборке точных соединений и машин широко используются проверочные базы.

Проверочной базой называется поверхность, линия или точка заготовки или детали, по отношению к которым производится выверка положения заготовки на станке или установка режущего инструмента при обработке заготовки, а также выверка положения других деталей или сборочных еди­ниц при сборке изделия.

ИСКУССТВЕННЫЕ ТЕХНОЛОГИЧЕСКИЕ БАЗЫ

Если конфигурация заготовок не дает возможности выбрать техно­логическую базу, позволяющую удобно, устойчиво и надежно ориенти­ровать и закрепить заготовку в приспособлении или на станке, то прибегают к созданию искусственных технологических баз. К кате­гории искусственных технологических баз относятся также такие технологические базы, которые в целях повышения точности базиро­вания обрабатываемой заготовки в приспособлении предварительно обрабатываются с более высокой точностью, чем это требуется для готового изделия по чертежу.

- правило шести точек;

При установке заготовок на опорные точки приспособлении каждая из опорных точек реализует одну одностороннюю связь в пограничной конфигурации, т. е. обязательно дополняется силой (сила тяжести или прижима).

При этом под «опорной точкой» подразумевается идеальная точка контакта поверхностей заготовки и приспособления, лишающая за­готовку одной степени свободы, делая невозможным ее перемещение в направлении, перпендикулярном опорной поверхности.

Шесть наложенных двусторон­них позиционных связей обеспечивают заданную ориентировку тела относительно системы координат 0ХУ2 и фиксирование тела в дан­ном положении.

Правило шести точек. Для полного базирования заготовки в при­способлении необходимо и достаточно создать в нем шесть опорных точек, расположенных определенным образом относительно базовых поверхностей заготовки. - полное и неполное базирование;

Полное базирование - лишение заготовки 6 степеней свободы

Неполное базирование применяют там, где необходимо сохранять степень свободы для совершения необходимых технологических действий(например закрепление заготовки на токарном станке)

- принципы совмещения и постоянства баз.

При назначении технологических баз для точной обработки заготовки в качестве технологических баз следует принимать поверхности, которые одновременно являются конструкторскими и изме­рительными базами детали, а также используются в качестве баз при сборке изделий.

При совмещении технологических, конструкторских и измери­тельных баз обработка заготовки осуществляется по размерам, проставленным в рабочем чертеже, с использованием всего поля допуска на размер, предусмотренного конструктором.

Если технологическая база не совпадает с конструкторской или измерительной базой, технолог вынужден производить замену раз­меров, проставленных в рабочих чертежах от конструкторских и измерительных баз более удобными для обработки технологиче­скими размерами, проставленными непосредственно от технологи­ческих баз. При этом происходит удлинение соответствующих раз­мерных цепей заготовки и поля допусков на исходные размеры, проставленные от конструкторских баз, распределяются между вновь введенными промежуточными размерами, связывающими тех­нологические базы с конструкторскими базами и с обрабатываемыми поверхностями. В конечном счете это приводит к ужесточению допусков на размеры, выдерживаемые при обработке заготовок, к удорожанию процесса обработки и понижению его производитель­ности.

Принцип постоянства баз заключается в том, что при разработке технологического процесса необходимо стремиться к использованию одной и той же технологической базы, не допуская без особой необхо­димости смены технологических баз {не считая смены черновой базы).

Стремление осущест­вить обработку на одной технологической базе объ­ясняется тем, что всякая смена технологических баз увеличивает погрешность взаимного расположения поверхностей, обработан­ных от разных техноло­гических баз, дополни­тельно внося в нее погреш­ность взаимного располо­жения самих технологи­ческих баз, от которых производилась обработка поверхностей.

11. Виды заготовок и способы их получения

Основными видами заготовок для деталей явл-ся заготовки, полученные:

-литьём;

-обработкой давлением;

-резкой сортового и профильного проката;

-комбинированными методами;

-специальными методами.

 

Получение заготовок литьём.

По сравнению с другими методами получения заготовок литьё обладает рядом преимуществ:

-высокие коэффициенты использования металла и весовой точности;

-практически неограниченные габариты и масса отливок;

-возможность использования сплавов, не поддающихся пластическому деформированию и трудно обрабатываемых резанием.

 

Метод получения заготовок литьём в песчано-глинистые формы вследствие своей универсальности применяются во всех типах производства. Этим методом производится около 80…85 % литых заготовок. Могут быть получены самые сложные отливки, практически неограниченных размеров. Отливки имеют равномерную структуру и характеризуются хорошей обрабатываемостью резанием. Литейные уклоны составляют 1-3˚ для деревянных моделей, 1-2˚ -для металлических моделей при ручной формовке, при машинной -0,5-1˚.

К недостаткам этого метода относятся:

-большой расход металла и формовочных материалов;

-большие припуски на м/о;

- большие производственные площади;

-большие капитальные затраты для создания нормальных условий труда;

-значительное кол-во брака.

Литьё в постоянные металлические формы – кокили позволяет увеличить производительность и съём с производственных площадей, увеличить точность и уменьшить шероховатость пов-тей, уменьшить расход металла и формовочных материалов, припуски на м/о, улучшить мех-е свойства материала, уменьшить себестоимость отливок и кол-во брака.

Формы кокилей изготовляются из чугуна или стали литьём с последующей м/о. Применяется также литьё в облицованный кокиль.

Наибольшее применение для литья в кокиль получили цветные сплавы, имеющие более низкую температуру плавления, а следовательно, более высокую стойкость форм.

Стойкость кокилей составляет : при литье цветных сплавов – до 150 тыс. заливок, при литье чугуна – до 1-5 тыс. заливок, стали – не более 100-500 заливок.

К недостаткам литья в кокиль относятся:

-необходимость упрощения конфигурации отливок и увеличения толщины стенок полых отливок;

-затруднение выхода газов из формы, и как следствие – возможность образования газовых раковин;

-возможность появления отбелённого слоя на пов-ти чугунных заготовок.

Центробежное литьё применяется для получения отливок типа тел вращения (труб, дисков, втулок, цилиндров, шпинделей) и фасонных отливок из стали, чугуна, цветных металлов и сплавов.

Способ центробежного литья имеет несколько разновидностей : с вертикальной осью вращения, горизонтальной, наклонной , вертикальной, не совпадающей с осью отливки. Позволяет получить по сравнению с предыдущими способами более высокое качество структуры вследствие более организованного размещения атомов металла, меньший расход металла (отсутствуют прибыли, литниковые системы), уменьшить кол-во брака – выход годного литья достигает 95% ( на – 20-60% больше, чем при литье в песчано- глинистые формы), снижение себестоимости изготовления отливок на 20-40%.

Недостатками явл-ся ограниченность конфигурации и размеров отливок, сложность формы для отливок сложной конфигурации.

Литьё под давлением позволяет получать точные отливки из цветных сплавов с малой шероховатостью и небольшой толщиной стенок, повышенную прочность отливок на 25-40% по сравнению с литьём в песчано- глинистые формы, уменьшить или полностью устранить припуски на обработку, осуществить высокую автоматизацию процесса, улучшить условия труда, сократить производственный цикл. Этим способом отливают заготовки деталей : корпуса карбюраторов, электромагниты, щиты малых электродвигателей и др.

 

Литьё под давлением производится на специальных литьевых машинах с горизонтальными или вертикальными камерами прессования; разновидностью литья под давлением явл-ся литьё с применением вакуума.

Недостатком способа явл-ся необходимость применения сложных форм и специального оборудования.

Литьё по выплавляемым моделям даёт возможность получать высокую точность и малую шероховатость поверхностей отливок, уменьшить внутренние напряжения в отливках или устранить совсем, получить минимальные припуски и улучшить условия труда.

Разновидностями способа явл-ся : литьё по растворяемым солевым моделям, литьё по выжигаемым моделям.

Недостатком данных способов явл-ся сложный технологический процесс получения отливок, требующий специального оборудования и специальной оснастки, длительный производственный цикл.

Литьё в оболочковые формы даёт по сравнению с литьём в песчано-глинистые формы более высокую точность и меньшую шероховатость поверхности, малые припуски на обработку, снижение трудоёмкости по всем элементам процесса, высокую производительность, уменьшение кол-ва формовочных смесей в несколько раз, улучшение условий труда, возможность внедрения комплексной автоматизации.

Оболочковые формы могут быть: песчано-смоляными, химически твердеющими и жидкостекольными.

Недостатки литья в оболочковые формы – дорогая и сложная оснастка, дорогие формовочные смеси, необходимость изготовления точных металлических моделей.

 

Заготовки , полученные штамповкой жидкого металла, обладают высокой плотностью структуры. Способ позволяет снизить расход металла в 1,5-3 раза по сравнению с литьём в песчано-глинистые формы, не требует дорогостоящего оборудования и оснастки.

Штамповка жидких металлов имеет несколько разновидностей:

-с кристаллизацией под поршневым давлением;

-выжиманием;

-вакуумное всасывание;

-непрерывное литьё и др.

Кроме приведённых выше способов литья существуют и другие, например, литьё в формы: гипсовые , песчано- цементные, кирпичные, шамотно- кварцевые, глинистые, каменные, керамические и др.

В 1988 г. введён в действие единый ГОСТ 26645-85 « Отливки из металлов и сплавов» на отливки, получаемые любым способом из чёрных и цветных металлов и сплавов. Данный стандарт устанавливает допуски размеров, формы, расположения и неровностей поверхности, допуски массы и припуски на обработку. Согласно ГОСТ 26645-85 точность отливки характеризуется четырьмя показателями:

-классом размерной точности ( 22 класса);

-степенью коробления (11 степеней );

-степенью точности поверхностей ( 22 степени);

-классом точности массы ( 22 класса).

Обязательному применению подлежат классы размерной точности и точности массы отливок.

Стандартом предусмотрено 18 рядов припуска отливок.

В технических требованиях чертежа отливки должны быть указаны нормы точности отливки в следующем порядке:

-класс размерной точности;

-степень коробления;

-степень точности поврхностей;

- класс точности массы;

-допуск смещения отливки.

 

Пример условного обозначения точности отливки 8-го класса размерной точности, 5-й степени коробления, 4-й степени точности поверхностей, 7-го класса точности массы с допуском смещения 0,8мм: Точность отливки 8-5-4-7 См 0,8 ГОСТ 26645-85.

 

В технических требованиях чертежа отливки должны быть указаны в нижеприведённом порядке значения номинальных масс детали, припусков на обработку. Технологических напусков и массы отливки.

Пример условного обозначения номинальных масс, равных для детали -20,35 кг, для припусков на обработку -3,15 кг, для технологических напусков – 1,35 кг, для отливки – 24, 85 кг.

Масса 20.35-3.15-1.35-24.85 ГОСТ 26645-85.

Для необрабатываемых отливок или при отсутствии напусков соответствующие величины обозначают «0». Например: Масса 20.35-0-0-20.35 ГОСТ 26645-85.

 

Заготовки, получаемые обработкой давлением.

Различают следующие способы получения заготовок обработкой давлением:

- ковка;

-штамповка ( горячая и холодная);

-специальные способы.

Все процессы обработки металлов давлением основаны на способности металлов в твёрдом состоянии устойчиво изменять формы и размеры под действием приложенных внешних сил, т.е пластически деформироваться. В процессе пластической деформации металл приобретает не только требуемую форму, но и меняет свою структуру и физико – механические свойства.

Способы получения заготовок давлением в основном явл-ся высокопроизводительными процессами, обеспечивают малые припуски и улучшенную структуру металла.

Материал, из которого получают заготовки давлением, должен обладать ковкостью: прочностью и пластичностью при высокой температуре. Ковкость в основном зависит от химического состава материала и его компонентов. Например, такие элементы , как хром, кремний, углерод и марганец- снижают , а никель – повышает ковкость. Наличие серы ( при температуре 800-900 град) вызывает явление красноломкости, фосфора ( более 0,03%) хладноломкости.

Ковка.

 

При ковке формообразование происходит вследствие свободного течения металла в стороны, перпендикулярные к движению формообразующего инструмента – бойка.

Ковкой заготовок на молотах и прессах получают поковки простой конфигурации с большой массой ( до 250т). Поковки имеют хорошую структуру металла по всему сечению, т.к течение металла не ограничивается инструментом, и он хорошо проковывается. Ковка не требует специального инструмента и оснастки.

Недостатком явл-ся низкая производительность , большая трудоёмкость, большие припуски и напуски на обработку, низкая точность. Для получения поковок более сложной конфигурации применяют подкладные кольца и штампы. Уменьшить припуски на обработку и снизить трудоёмкость позволяет применение радиально- ковочных машин. Однако область их применения ограничена только телами вращения.

В зависимости от массы поковок для ковки применяют: пневматические молоты, паровоздушные молоты , гидравлические прессы.

 

Горячая штамповка.

По сравнению с ковкой горячая объёмная штамповка имеет ряд преимуществ:

-более сложная форма поковки и лучшее качество поверхности;

-снижение припусков на обработку;

-экономия металла;

-повышение точности изготовления заготовок;

-уменьшение штамповочных уклонов за счёт наличия в конструкции штамповочного оборудования выталкивателей;

-повышение производительности труда;

-уменьшение трудоёмкости;

-улучшение условий труда.

К недостаткам горячей объёмной штамповки относится:

-дорогостоящая оснастка (инструмент – штамп), что позволяет применять штамповку только при большом объёме выпуска деталей;

-ограничения по массе получаемых поковок;

-дополнительный отход металла в заусенец (10-30% от массы поковки);

-большие усилия деформирования , чем при ковке.

 

Применение унифицированных блоков штампов со сменными вставками и унификация другой оснастки дают возможность применения штампов даже в мелкосерийном производстве. Хороший эффект дают комбинированные способы изготовления заготовок: ковка и последующая штамповка и т.д.

Горячая объёмная штамповка подразделяется на различные виды в зависимости от типов штампов, оборудования , исходной заготовки, способа установки заготовки в штампе и т.п.

В зависимости от оборудования имеются следующие виды объёмной штамповки:

-на штамповочных паровоздушных молотах двойного действия;

-на кривошипных горячештамповочных прессах;

-на горизонтально- ковочных машинах (ГКМ);

-на гидравлических прессах;

-на высокоскоростных молотах;

-на специальных машинах ( ковочные вальцы, горизонтально- гибочные машины, ротационно-обжимные и радиально- обжимные машины, электровысадные машины, раскатные машины).

В зависимости от типа штампа штамповка подразделяется на следующие виды:

-в открытых штампах;

-в закрытых штампах;

-в штампах выдавливания.

Штамповка в открытых штампах характеризуется тем, что штамп в процессе деформирования остаётся открытым. Зазор между подвижной и неподвижной частями штампа явл-ся переменным, в него затекает ( выдавливается ) металл при деформировании, образуя заусенец. Основное назначение этого заусенца – компенсация колебаний исходных заготовок по массе. Этот тип штампа можно применять для деталей любой конфигурации. Однако наличие заусенца увеличивает расход металла, а для обрезки заусенца необходимо применение специальных обрезных прессов и штампов.

При штамповке в закрытых штампах (безоблойная штамповка) штамп в процессе деформирования остаётся закрытым, т.е металл деформируется в закрытом пространстве. Отсутствие заусенца сокращает расход металла , отпадает необходимость в обрезных прессах и инструменте. Макроструктура поковок более качественная , т.к нет нарушения волокон, имеющих место при обрезке заусенца. Однако этот тип штампа применяется для простых деталей , в основном тел вращения.

Штамповка в штампах для выдавливания – наиболее прогрессивна. При этом снижается расход металла ( до 30%), повышается коэффициент весовой точности, повышается точность поковки и чистота поверхностей, производительность труда увеличивается в 1,5-2,0 раза.

Недостатки – высокие удельные усилия деформирования, большие энергозатраты и низкая стойкость штамповой оснастки. Применяются для заготовок с высокой пластичностью.

Штамповка на молотах улучшает точность заготовок, но явл-ся трудоёмким процессом. Большую трудность представляет центрирование половинок штампа относительно друг друга. Процесс плохо поддаётся автоматизации.

Штамповка на прессах (кривошипных, гидравлических, фрикционных) за счёт применения выталкивателей позволяет уменьшить припуски на обработку, штамповочные уклоны в 1,5-2,0 раза по сравнению со штамповкой на молотах, улучшить условия труда, повысить производительность. Отсутствие ударов при работе уменьшает вибрации, повышает стойкость штампов, улучшает центрирование половинок штампов.

Штамповка на горизонтально- ковочных машинах (ГКМ), по сравнению со штамповкой на прессах и молотах. Обеспечивает возможность получения сложных поковок с глубокими полостями и отверстиями, получение заготовок высокого качества без облоя и штамповочных заусенец с небольшими припусками на обработку.

ГКМ представляют собой механический пресс, расположенный в горизонтальной плоскости. В отличие от штампов молотовых и прессовых штампы на ГКМ имеют два взаимно перпендикулярных разъёма и могут быть открытыми и закрытыми. Наличие двух разъёмов в штампе создаёт лучшие условия для выполнения высадочных работ и позволяет значительно уменьшить штамповочные уклоны (наружные 15´ - 1 град, внутренние 30´-2 град), вплоть до их отсутствия.

Поковки, получаемые на ГКМ, обычно имеют форму тел вращения.

Недостатком явл-ся необходимость применения прутка (проката) повышенной точности.

 

При разработке чертежа поковки пользуются ГОСТ 7505-89, данные которого распространяются на штампуемые детали массой до 250 кг, изготавливаемые горячей объёмной штамповкой из чёрных металлов на различных видах штамповочного оборудования.

При определении припусков и допускаемых отклонений размеров необходимо определить исходный индекс.

Исходный индекс – это условный показатель, учитывающий конструктивные характеристики (класс точности, группу стали, степень сложности, конфигурацию поверхности разъёма) и массу поковки. Стандарт устанавливает 23 исходных индекса. Исходными данными для определения исходного индекса явл-ся:

-масса поковки;

-группа стали;

-степень сложности поковки;

-класс точности поковки.

Различают две категории сталей:

М1 – углеродистая и легированная сталь с содержанием углерода до 0,35% и легирующих элементов до 2%;

М2 – углеродистая сталь с содержанием углерода свыше 0,35 до 0,65% и легированная , за исключением указанной в группе М1.

Степень сложности поковки (всего 4) определяют путём вычисления отношения массы (объёма) поковки к массе (объёму) геометрической фигуры, в которую вписывается форма поковки.

Стандарт предусматривает пять классов точности поковок.

На чертеже поковки должны быть указаны: исходный индекс, класс точности, группа стали и степень сложности поковки.

Холодная штамповка.

-объёмная холодная штамповка;

-листовая штамповка;

-штамповка на горизонтально- гибочных машинах;

-вальцовка;

-раскатка;

-накатка;

-калибровка.

Объёмная холодная штамповка делится на ряд видов:

- выдавливание;

-высадку;

-радиальное обжатие;

-редуцирование и др.

Этот способ формообразования устраняет потери металла и отходы в окалину, имеющие место при нагреве металла, обеспечивает получение более точных размеров заготовки и качество поверхности. В рез-те холодного деформирования в металле ликвидируются некоторые внутренние дефекты, обеспечивается однородность его структуры, происходит упрочнение поверхностного слоя.

Заготовки из пластмасс.

Пластмассы – неметаллические материалы, которые получают на основе высокомолекулярных соединений – полимеров.

Пластмассы, получаемые из искусственных и естественных смол и их смесей с различными веществами, можно формировать прессованием, литьём и выдавливанием. Они обладают ценными физико- механическими свойствами( стойкость к агрессивным средам, электротеплоизоляционные, антифрикционные и др), из них легко изготовить детали сложной конструкции.

Пластмассы применяют : для изготовления некрупных деталей ( пробок, заглушек, прокладок, вкладышей, зубчатых колёс, крыльчаток и др). Однако пластмассам свойственна низкая ударная вязкость, недостаточная прочность, невысокая теплостойкость, старение.

Основные положения к выбору оптимальной заготовки.

Выбранный способ получения заготовки должен быть экономичным, обеспечивающим требуемое качество детали, производительным, нетрудоёмким процессом.

Главным при выборе заготовки явл-ся обеспечение заданного качества готовой детали при её минимальной себестоимости.

Решение задач формообразования деталей целесообразно перенести на заготовительную стадию и тем самым снизить расходы материала, уменьшить долю затрат на механическую обработку в себестоимости готовой детали.

В первую очередь при выборе заготовки следует определить, каким методом наиболее целесообразно получить заготовку для данной детали. При этом надо ориентироваться на материал и требования к нему с точки зрения обеспечения служебных свойств детали. Далее, пользуясь качественной оценкой, наметить предварительно способ её получения.

Предварительно выбор материала и способа получения заготовки на основе экономических показателей может производиться по таблицам или графикам, приведенным в литературе. Графики показывают зависимость себестоимости получения заготовки от программы выпуска деталей и точности изготовления.

Окончательный выбор заготовки производится на основе экономических расчётов себестоимости получения заготовки и себестоимости её дальнейшей м/о.

По мере усложнения конфигурации заготовки, уменьшения припусков, повышения точности размеров усложняется и удорожается технологическая оснастка заготовительного цеха и возрастает себестоимость заготовки, но при этом снижается трудоёмкость и себестоимость последующей м/о заготовки, повышается коэффициент использования материала. Заготовки простой конфигурации дешевле, т.к не требуют последующей трудоёмкой обработки и повышенного расхода материала.

В качестве заготовок деталей машин применяются:

1. Прокат. Используют калиброванные прутки и горячекатаную сталь повышенной и обычной точности. По ГОСТу 7417 калиброванные прутки изготовляют ф 3-30 мм по классу точности 2 , диаметром 3-65 мм по 3-му классу точности и 3-100 мм по 4-5-му классу точности.

При креплении в цанговых зажимах применяются калиброванные прутки 5-го класса точности. Заготовки из калиброванных прутков 4-го и высших классов точности обычно не обрабатываются лезвийным инструментом, а шлифуют.

В условиях крупносерийного и массового пр-ва целесообразно использовать прокат спец-х профилей; при этом почти полностью исключается или значительно сокращается м/о. Профильное холодное волочение обеспечивает 4-й класс точности и 6-й класс чистоты. Наиболее целесообразно применять профильное волочение для деталей с одинаковым профилем по всей длине.

Механической обработке заготовок из проката предшествует правка и отрезка.

Отрезка заготовок производится на токарных и токарно-отрезных станках, дисковых, ленточных и ножовочных пилах, кривошипных и эксцентриковых прессах.

Способ отрезки на прессах обеспечивает высокую производительность , но при нём не достигается перпендикулярность реза к оси прутка и происходит смятие конца заготовки.

При отрезке на ножовочных и ленточных пилах сокращается расход металла, однако производительность этих способов невелика.

При выборе способа отрезки заготовки учитывается экономическая целесообразность того или иного способа.

Заготовки из листового проката отрезаются от листа или полосы на гильотинных ножницах, пресс-ножницах, при помощи газовой резки по разметке на спец-х машинах, работающих по копирам и позволяющих одновременно вырезать несколько заготовок с достаточно высокой точностью.

Заготовки деталей из листового металла изготовляются путём вырубки (плоские детали разной конфигурации), гибки, вытяжки и совмещения этих методов. Штамповку целесообразно применять при изготовлении значительного кол-ва деталей; при этом стоимость изготовления штампов компенсируется снижением затрат на изготовление деталей. Штамповку у деталей из листового материала производят на механических (кривошипных и эксцентриковых) гидравлических прессах.

2. Поковки. Их применяют для деталей сложной конфигурации большого сечения или деталей, имеющих большую разницу в сечениях по длине ( шестерни, диски, ступенчатые и фланцевые валы). Поковки изготовляют на пневматических и паровоздушных молотах и гидравлических прессах из сортового проката или из слитков.

Точность заготовок , изготовленных свободной ковкой , невысокая , поэтому они имеют значительные припуски на обработку. Допуски на размеры поковок, изготовленных свободной ковкой на прессах, составляют 12-72 мм в завис-ти от конфигурации и р-ров поковки.

Свободной ковкой трудно получить заготовки сложной конфигурации с выступами, рёбрами, выемками.

Свободной ковкой получают заготовки в индивидуальном и мелкосерийном производстве в тех случаях, когда при применении проката расходуется большое кол-во металла на стружку, а также для повышения механических св-в материала.

3. Штамповки. Штампованные заготовки используют для про-ва деталей сложной конфигурации. При штамповке в закрытытх штампах ф-ма и р-ры заготовок определяются ф-мой и р-рами ручьёв штампа. В закрытых штампах можно получить детали сложной конфигурации – с рёбрами, выступами, изгибами. Производительность труда при этом высокая.

Например, производительность труда при штамповке сложных небольших деталей в нескольких ручьях составляет 200-400 деталей в час, а при штамповке более крупных деталей массой около 100 кг – до 100 деталей в час. Высокая точность загот-к позволяет значительно уменьшить припуски на обработку и в отдельных случаях, применяя чеканку. Совсем отказаться от припуска.

Но штамповка в закрытытх штампах применяется только при значительном кол-ве деталей в серии. Это объясняется высокой стоимостью ковочных и отрезных штампов.

Штамповки изготовляют на паро-воздушных и фрикционных молотах, на фрикционных, кривошипных и гидравлических прессах и на горизонтально-ковочных и ротационных машинах.

При небольших сериях штамповки могут быть изготовлены в подкладных штампах на ковочных молотах.

На горизонтальных ковочных машинах изготовляют детали типа клапанов, валов с фланцами, валов-шестерён, втулок, рычагов. При этом можно получить заготовку без штамповочных уклонов или с очень малыми штамповочными уклонами, с прошитыми глухими или сквозными отверстиями, а также заготовки с большой разницей сечения по длине.

Припуски на штампованных заготовках принимаются в пределах 0,5-5 мм и зависят от способа изготовления и раз-ров детали; допуски на изготовление обычно не превышают половины величины припуска.

В последнее время появились новые способы получения штампованных заготовок из сортового и листового проката;

Штамповка с применением взрывчатых вещ-в, при котор. взрывной волной, действующей на заготовку через водную или воздушную среду, ей придаётся форма матрицы, изготовленной из металла, бетона и др. материалов;

Штамповка в электромагнитном поле, при котор. под действием мощного кратковременного электромагнитного импульса заготовке придаётся ф-ма матрицы.

Преимуществами этих способов явл-ся возможность получения крупных заготовок при отсутствии мощного оборудования, простота оснастки и её невысокая стоимость, возможность штамповки заготовок из материалов, трудно штампуемых другими способами.

4. Отливки из стали, чугуна и цветных металлов. Их применяют в качестве заготовок для деталей сложной конфигурации.

Способы получения отливок:

1)литьё в земляные формы, котор. служат для изготовления только одной детали и при извлечении заготовки разрушаются ;

2)литьё в оболочковые формы, изготовленные из песка, плакированного бакелитовыми или др. полимизирующими связками. В оболочковых ф-мах можно получить отливки высокой точности ( 4-5 класс) с чистотой пов-ти 4-5-го класса и малыми уклонами, что позволяет уменьшить припуски на м/о;

Малые литейные уклоны, что позволяет значительно сократить припуски на м/о, а в некотор. случаях оказаться от обработки;

3)литьё по выплавляемым моделям. Применяется для деталей из стали и цветных металлов. По выплавляемым моделям можно получить детали очень сложной конфигурации, с отв-ми , каналами, тонкими рёбрами и выступами, с точностью по 4-7 му классам и чистотой пов-ти 3-4 класса. Применение этого дорогостоящего метода получения заготовок целесообразно в тех случаях, когда точное литьё позволяет отказаться от м/о. Точным литьём изготовляют детали (грузы регуляторов, толкатели топливных насосов, крыльчатки водяных насосов). Этим методом можно получить отв-я ф до 2,5 мм и стенки толщиной до 0,3 мм;

4).центробежный способ литья. Этим способом получают заготовки для деталей, имеющих форму тел вращения ( втулки, трубы, гильзы) и заготовки для деталей фасонного профиля, имеющих ось симметрии ( рычаги, вилки и т.п);

5) литьё способом вакуумного всасывания. Этим способом изготовляют втулки и др.заготовки несложной формы;

6) литьё методом выжимания . Применяется для изготовления тонкостенных крупногабаритных деталей типа крышек, тонкостенных плит и др.

5. Штамповки из жидкого металла. Их используют для изготовления заготовок из цветных металлов. Заготовки получают путём заливки в подогретый штамп жидкого металла, котор. при охлаждении до полужидкого состояния под давлением пуансона заполняет форму и кристаллизуется. Кристаллизация под давлением обеспечивает плотность структуры, высокую точность и чистоту поверх-ти. Этот способ применяется для изготовления ответственных заготовок.

6. Металлокерамические заготовки. Их получают путём прессования заготовок из смеси металлических порошков в прессформах с последующим спеканием и калибровкой. Этим методом можно получить детали со спец-ми свойствами: жаростойкие( вставки седел клапанов)

Антифрикционные (втулки, подшипники),фрикционные, а также детали, не требующие доп.обработки.

Поковки, штамповки, отливки из чугуна, стали и лёгких сплавов перед м/о часто подвергают т/о: нормализации, отжигу, улучшению, старению, закалке и т.д. Это позволяет придать матер-лу заготовок повышенные мех-е св-ва, улучшить обрабатываемость или устранить внутренние напряжения, возникшие при остывании заготовки и вызывающие коробление деталей в процессе обработки и эксплуатации.

Вид заготовки оказывает значительное влияние на хар-р ТП, трудоёмкость и экономичность обработки.

При выборе заготовки желательно, чтобы её ф-ма максимально приближалась к форме готовой детали.Это позволяет лучше использовать материал и уменьшить затраты на снятие припуска.

Однако, при усложнении формы и повышении точности заготовок увеличивается стоимость изготовления, т.к. требуется применять более сложные и дорогие оснастку и оборудование. Поэтому для одинаковых деталей различных серий выбирают разные заготовки.

Если выпускается несколько десятков коленчатых валов двигателей, то применяется заготовка - поковка;

Если же необходимо производить несколько тысяч таких коленчатых валов, заготовка выполняется – штамповкой.

При определении ф-мы и р-ров заготовки необход. предусмотреть припуск, достаточный для получения требуемой чистоты обрабатываемых пов-тей с учётом компенсации погрешностей, вызываемых неточностью изготовления заготовки и её деформацией, а также погрешностей установки заготовки при обработке.

Дата: 2019-04-23, просмотров: 297.