Выше было указано, как меняется температура в определенной массе воздуха, которая адиабатически поднимается или опускается. Ни в коем случае не следует смешивать эти индивидуальные изменения с вертикальным распределением температуры в атмосфере.
Температура в атмосферном столбе может распределяться по высоте различным образом. Это распределение не подчинено никакой простой закономерности, и кривая, представляющая это распределение в более или менее толстом слое атмосферы, не является простой геометрической кривой. В некоторых случаях ее можно только приближенно приравнять такой кривой.
Представление о распределении температуры с высотой дает вертикальный градиент температуры –dT / dz, т. е. изменение температуры в атмосфере на единицу высоты, обычно на 100 м.
Так как перед производной ставится знак минус, то в обычном случае падения температуры с высотой, т. е. при отрицательном dТ и положительном dz, градиент имеет положительную величину.
Бывают такие случаи, когда температура воздуха с высотой не падает, а растет - инверсия температуры, а вертикальный градиент температуры будет при этом, очевидно, отрицательным. Инверсии особенно часты по ночам в приземном слое, но встречаются на разных высотах и в свободной атмосфере.
Если температура в воздушном слое не меняется с высотой, т. е. вертикальный градиент ее равен нулю, то такое состояние слоя называют изотермией.
Если молекулярная температура с высотой меняется, то, вообще говоря, меняется также и потенциальная температура. Однако в случае, если молекулярная температура падает с высотой на 1 o /100 м, то потенциальная температура остается с высотой неизменной. Это легко видеть из самых простых соображений. При указанном градиенте молекулярной температуры, с какого бы уровня ни была опущена воздушная частица на уровень моря, она, адиабатически нагревшись, получит на уровне моря одну и ту же температуру. Это и значит, что потенциальная температура на всех уровнях одинакова.
В случае же, если вертикальный градиент молекулярной температуры меньше 1 o /100 м, что как раз является обычным, потенциальная температура с высотой растет, причем растет тем быстрее, чем он меньше.
И только в тех редких случаях, когда вертикальный градиент молекулярной температуры больше 1 o /100 м, потенциальная температура с высотой убывает, причем убывает тем быстрее, чем больше градиент молекулярной температуры превышает 1 o /100 м.
В изотермическом слое потенциальная температура растет с высотой. Еще быстрее растет она в слое инверсии, т. е. при возрастании молекулярной температуры с высотой.
Ветер и турбулентность
В зависимости от распределения атмосферного давления воздух постоянно перемещается в горизонтальном направлении. Это горизонтальное перемещение воздуха называется ветром. Скорость и направление ветра все время меняются.
К горизонтальному переносу воздуха присоединяются и вертикальные составляющие. Они обычно малы по сравнению с горизонтальным переносом, порядка сантиметров или десятых долей сантиметра в секунду. Только в особых условиях, при так называемой конвекции, в небольших участках атмосферы вертикальные составляющие скорости движения воздуха могут достигать нескольких метров в секунду.
Ветер всегда обладает турбулентностью. Это значит, что отдельные количества воздуха в потоке ветра перемещаются не по параллельным путям. В воздухе возникают многочисленные беспорядочно движущиеся вихри и струи разных размеров. Отдельные количества воздуха, увлекаемые этими вихрями и струями, так называемые элементы турбулентности, движутся по всем направлениям, в том числе и перпендикулярно к общему или среднему направлению ветра и даже против него. Эти элементы турбулентности — не молекулы, а крупные объемы воздуха, линейные размеры которых измеряются сантиметрами, метрами, десятками метров. Таким образом, на общий перенос воздуха в определенном направлении и с определенной скоростью налагается система хаотических, беспорядочных движений отдельных элементов турбулентности по сложным переплетающимся траекториям.
Турбулентность возникает вследствие различия скоростей ветра в смежных слоях воздуха. Особенно велика она в нижних слоях атмосферы, где скорость ветра быстро растет с высотой. Но в развитии турбулентности принимает участие и так называемая архимедова, или гидростатическая, сила. Отдельные количества воздуха поднимаются вверх, если их температура выше, а, стало быть, плотность меньше, чем температура и плотность окружающего воздуха. Напротив, количества воздуха более холодные и плотные, чем окружающий воздух, опускаются вниз.
Такое перемешивание воздуха за счет различий плотности происходит тем интенсивнее, чем быстрее падает температура с высотой, т. е. чем больше вертикальный градиент температуры. Поэтому можно условно говорить о динамической турбулентности, возникающей независимо от температурных условий, и о термической турбулентности (или конвекции), определяемой температурными условиями. Однако в действительности турбулентность всегда имеет комплексную природу, и правильнее говорить о большей или меньшей роли термического фактора в ее возникновении и развитии.
Турбулентность с преобладанием термических причин при определенных условиях более или менее резко меняет свой «масштаб»: превращается в упорядоченную конвекцию. Вместо мелких хаотически движущихся турбулентных вихрей, в ней начинают преобладать мощные восходящие движения воздуха типа струй или токов, со скоростями порядка нескольких метров в секунду, иногда свыше 20 м/сек. Такие мощные восходящие токи воздуха называют термиками. Ими широко пользуются планеристы. Наряду с ними наблюдаются и нисходящие движения, менее интенсивные, но захватывающие большие площади.
Воздушные массы и фронты
В процессе общей циркуляции атмосферы воздух тропосферы расчленяется на отдельные воздушные массы, которые более или менее длительно сохраняют свою индивидуальность, перемещаясь из одних областей Земли в другие. В горизонтальном направлении воздушные массы измеряются тысячами километров.
Воздушные массы по своим температурам и по другим свойствам (влажность, содержание пыли) носят на себе отпечаток своего очага, т. е. той области Земли, где воздушная масса сформировалась как целое под воздействием однородной земной поверхности. Потом, перемещаясь в другие области Земли, воздушные массы переносят в эти области и свой режим погоды. Преобладание в данном районе в тот или иной сезон воздушных масс определенного типа или типов создает характерный климатический режим этого района.
Основными типами воздушных масс являются четыре типа с различным зональным положением очагов:
- массы арктического (в южном полушарии — антарктического) воздуха,
- полярного (или умеренного) воздуха,
- тропического воздуха,
- экваториального воздуха.
Для каждого из этих типов характерен свой интервал значений температуры у земной поверхности и на высотах, свои значения влажности, дальности видимости и пр.
Конечно, свойства воздушных масс, прежде всего температура, непрерывно меняются при их перемещении из одних районов в другие. Происходит трансформация воздушных масс.
Воздушные массы, перемещающиеся с более холодной земной поверхности на более теплую (обычно из высоких широт в низкие), называют холодными массами. На своем пути холодная воздушная масса вызывает похолодание в тех районах, в которые она приходит. Но в пути она сама прогревается, притом преимущественно снизу, от земной поверхности. Поэтому в ней возникают большие вертикальные градиенты температуры и развивается конвекция с образованием кучевых и кучево-дождевых облаков и с выпадением ливневых осадков.
Воздушные массы, перемещающиеся на более холодную поверхность (в более высокие широты), называются теплыми массами. Они приносят потепление, но сами охлаждаются снизу, отчего в их нижних слоях создаются малые вертикальные градиенты температуры. Конвекция в них не развивается, преобладают слоистые облака и туманы.
Различают еще местные воздушные массы, длительно находящиеся в одном районе. Свойства местных масс определяются нагреванием или охлаждением снизу в зависимости от сезона.
Смежные воздушные массы разделены между собой сравнительно узкими переходными зонами, сильно наклоненными к земной поверхности. Эти зоны носят название фронтов. Длина таких зон — тысячи километров, ширина — лишь десятки километров. Вверх фронты прослеживаются на несколько километров, нередко до самой стратосферы.
Фронты между воздушными массами указанных выше основных географических типов называют главными фронтами, в отличие от менее значительных вторичных фронтов между массами одного и того же географического типа.
Главные фронты между арктическим и полярным воздухом носят название арктических фронтов, между полярным и тропическим воздухом — полярных фронтов, между тропическим и экваториальным воздухом — тропических фронтов.
С фронтами связаны особые явления погоды. Восходящие движения воздуха в зонах фронтов приводят к образованию обширных облачных систем, из которых выпадают осадки на больших площадях. Огромные атмосферные волны, возникающие в воздушных массах по обе стороны от фронта, приводят к образованию атмосферных возмущений вихревого характера — циклонов и антициклонов, определяющих режим ветра и другие особенности погоды. Особенно важны в этом отношении полярные фронты. Обо всем этом будет подробнее говориться в последующих главах.
Фронты постоянно возникают вновь и исчезают (размываются) вследствие определенных особенностей атмосферной циркуляции. Вместе с ними формируются, меняют свойства и, наконец, теряют свою индивидуальность воздушные массы.
Дата: 2019-02-25, просмотров: 489.