Очень важную роль в атмосферных процессах играет то обстоятельство, что температура воздуха может изменяться и часто действительно изменяется адиабатически, т. е. без теплообмена с окружающей средой (с окружающей атмосферой, земной поверхностью и мировым пространством). Вполне строго адиабатических процессов в атмосфере не бывает: никакая масса воздуха не может быть полностью изолирована от теплового влияния окружающей среды. Однако если атмосферный процесс протекает достаточно быстро и теплообмен за это время мал, то изменение состояния можно с достаточным приближением считать адиабатическим.
Если некоторая масса воздуха в атмосфере адиабатически расширяется, то давление в ней падает, а вместе с ним падает и температура. Напротив, при адиабатическом сжатии массы воздуха давление и температура в ней растут. Эти изменения температуры, не связанные с теплообменом, происходят вследствие преобразования внутренней энергии газа (энергии положения и движения молекул) в работу или работы во внутреннюю энергию. При расширении массы воздуха производится работа против внешних сил давления, так называемая работа расширения, на которую затрачивается внутренняя энергия воздуха. Но внутренняя энергия газа пропорциональна его абсолютной температуре; поэтому температура воздуха при расширении падает. Напротив, при сжатии массы воздуха производится работа сжатия. Внутренняя энергия рассматриваемой массы воздуха вследствие этого возрастает, т. е. скорость молекулярных движений увеличивается. Следовательно, растет и температура воздуха.
Сухоадиабатические изменения температуры
Закон, по которому происходят адиабатические изменения состояния в идеальном газе, с достаточной точностью применим к сухому воздуху, а также к ненасыщенному влажному воздуху. Этот сухоадиабатический закон выражается уравнением сухоадиабатического процесса, или уравнением Пуассона:
где А — термический эквивалент работы; показатель AR / cp равен 0,286.
Для влажного ненасыщенного воздуха вместо температуры Т следует брать виртуальную температуру Т v .
Смысл уравнения Пуассона состоит в следующем. Если давление в массе сухого или ненасыщенного воздуха меняется от р0 в начале процесса до р в конце процесса, то температура в этой массе меняется от Т0 в начале до T в конце процесса; при этом значения температуры и давления связаны написанным выше уравнением.
Сухоадиабатические изменения температуры при
Вертикальных движениях
В атмосфере расширение воздуха и связанное с ним падение давления и температуры происходят в наибольшей степени при восходящем движении воздуха. Такой подъем воздуха может происходить разными способами: в виде восходящих токов конвекции; над поверхностью фронта — при движении обширных слоев воздушной массы вверх по пологому клину другой, более холодной воздушной массы; при подъеме воздуха по горному склону. Аналогичным образом сжатие воздуха, сопровождающееся повышением давления и температуры, происходит при опускании, при нисходящем движении воздуха.
Отсюда важный вывод: восходящий воздух адиабатически охлаждается, нисходящий воздух адиабатически нагревается.
Нетрудно подсчитать, на сколько метров должен подняться или опуститься воздух, чтобы температура в нем понизилась или повысилась на один градус.
Вертикально движущийся воздух мало отличается по абсолютной температуре от окружающего воздуха. В связи с этим, получим для изменения температуры в вертикально движущемся воздухе на единицу изменения высоты
Значком i здесь указано, что температура относится к индивидуальной вертикально движущейся массе воздуха. Знак минус перед правой частью показывает, что при адиабатическом подъеме воздуха температура его падает, а при адиабатическом опускании возрастает. Величина Ag / cp равна 0,98°/100 м.
Итак, при адиабатическом подъеме сухого или ненасыщенного воздуха температура на каждые 100 м подъема падает почти точно на один градус, а при адиабатическом опускании на 100 м температура растет на ту же величину.
Эта величина 1°/100 м называется сухоадиабатическим градиентом Г d . Еще раз напомним, что речь идет об изменении температуры с высотой в вертикально движущейся индивидуальной частице воздуха. Не следует смешивать термин «градиент» в этом значении с вертикальным градиентом температуры в атмосферном столбе, о котором пойдет речь ниже.
Дата: 2019-02-25, просмотров: 341.