Неофициальная правовая информация
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Неофициальная правовая информация, представляющая собой материалы и сведения о законодательстве и практике его применения, отличается от официальной правовой информации и правовой информации, имеющей юридическое значение, прежде всего тем, что не влечет правовых последствий. Ее можно подразделить на следующие группы:

- материалы подготовки, обсуждения и принятия законов и иных нормативных правовых актов;

- материалы учета и систематизации законодательства (картотеки учета нормативных правовых актов, предварительные материалы подготовки собраний и сводов законов, неофициальные сборники нормативных правовых актов и т.д.);

- материалы статистики по правовым вопросам (статистические данные о состоянии преступности, правонарушениях и т.д.);

- образцы деловых бумаг;

- комментарии законодательства;

- научные, научно - популярные, учебные и иные труды по вопросам законодательства.

Неофициальная правовая информация, не являясь нормативной и порождающей правовые последствия, имеет тем не менее важное значение для эффективной реализации норм права. Так, мнения известных ученых, комментирующих, разъясняющих законодательство, представляют интерес как для специалистов, так и для широких кругов населения и используются при реализации, применении правовых норм.

 

28.​ Условия вступления в силу федеральных нормативных правовых актов.

Обязательные условия вступления в силу нормативных правовых актов:

1.​ официальное опубликование;

2.​ государственная регистрация нормативных правовых актов федеральных органов исполнительной власти в Министерстве юстиции РФ;

3.​ специальные условия.

1.Официальное опубликование – это помещение полного текста документа в специальных изданиях, признанных официальными действующим законодательством.

В соответствии с ч. 3 ст. 15 Конституции РФ все законы, а также любые нормативные акты, затрагивающие права, свободы и обязанности человека и гражданина, должны быть официально опубликованы для всеобщего сведения, то есть обнародованы.

2. Государственная регистрация нормативных правовых актов федеральных органов исполнительной власти в Министерстве юстиции РФ.

С 15 мая 1992 года Постановлением Правительства РФ от 08.05.1992 N 305 была введена государственная регистрация нормативных актов министерств и ведомств, затрагивающих права и интересы граждан и носящих межведомственный характер.

В настоящее время вопросы государственной регистрации и вступления в силу ведомственных НПА регулируются Указом Президента РФ от 23.05.1996 N 763 и Постановлением Правительства РФ от 13.08.1997 N 1009. Так, в соответствии с пунктом 10 Правил, утвержденных указанным Постановлением, государственной регистрации подлежат нормативные правовые акты, затрагивающие права, свободы и обязанности человека и гражданина, устанавливающие правовой статус организаций, имеющие межведомственный характер, независимо от срока их действия, в том числе акты, содержащие сведения, составляющие государственную тайну, или сведения конфиденциального характера.

Зарегистрированные НПА подлежат официальному опубликованию в "Российской газете" в течение десяти дней после дня их регистрации, а также в Бюллетене нормативных актов федеральных органов исполнительной власти издательства "Юридическая литература" Администрации Президента РФ (пункт 9 Указа Президента РФ от 23.05.1996 N 763).

3. Специальные условия.

В ряде случаев законодателем определены специальные условия вступления в силу НПА. При этом даже если в тексте документа указана точная дата вступления в силу, это еще не является гарантией того, что документ начнет действовать с указанной даты. Необходимо, чтобы до наступления этой даты были выполнены все специальные условия, установленные для данного вида НПА. В противном случае документ вступит в силу в более поздний срок.

 

29.​ Определение компьютерной сети, классификация по типу среды передач, по необходимости поддержания постоянного соединения. Сеть ARPANET. Фидонет.

Компьютерная сеть (вычислительная сеть, сеть передачи данных) — система связи компьютеров и/или компьютерного оборудования (серверы, маршрутизаторы и другое оборудование). Для передачи информации могут быть использованы различные физические явления, как правило — различные виды электрических, световых сигналов или электромагнитного излучения.

Для классификации компьютерных сетей используются разные признаки, выбор которых заключается в том, чтобы выделить из существующего многообразия такие, которые позволили бы обеспечить данной классификационной схеме такие обязательные качества:

-​ возможность классификации всех, как существующих, так и перспективных, компьютерных сетей;

-​ дифференциацию существенно разных сетей;

-​ однозначность классификации любой компьютерной сети;

-​ наглядность, простоту и практическую целесообразность классификационной схемы.

Определенное несоответствие этих требований делает задание по выбору рациональной схемы классификации компьютерной сети достаточно сложной, такой, которая не нашла до этого времени однозначного решения. В основном компьютерные сети классифицируют по признакам структурной и функциональной организации. Рассмотрим основные признаки классификации.

IV.​ По типу среды передач:

1)​ проводные (телефонный провод, коаксиальный кабель, витая пара, волоконно-оптический кабель);

2)​ беспроводные (передачей информации по радиоволнам в определенном частотном диапазоне).

VIII.​ По необходимости поддержания постоянного соединения:

1)​ пакетная сеть, например Фидонет (от англ. FidoNet) — международная любительская компьютерная сеть, построенная по технологии «из точки в точку». Изначально программное обеспечение FidoNet разрабатывалось под MS-DOS, однако в скором времени было портировано под все распространённые операционные системы, включая UNIX, GNU/Linux, Microsoft Windows, OS/2 и Mac OS;

2)​ онлайновая сеть, например Интернет (англ. Internet) — всемирная система объединённых компьютерных сетей, построенная на использовании протокола IP и маршрутизации пакетов данных. Интернет образует глобальное информационное пространство, служит физической основой для Всемирной паутины (WWW, World Wide Web) и множества других систем (протоколов) передачи данных, также к онлайновым сетям относится и GSM;

3)​ стеки протоколов.

 

Первые компьютерные сети появились в 60-е годы. Университетами США для министерства обороны была создана сеть АРПА, трансформировавшаяся впоследствии в международную глобальную сеть Интернет.

ARPANET (от англ. Advanced Research Projects Agency Network) — компьютерная сеть, созданная в 1969 году в США Агентством Министерства обороны США по перспективным исследованиям (ARPA) и явившаяся прообразом сети Интернет. Это была первая в мире сеть, перешедшая на маршрутизацию пакетов данных (1 января 1983 года). ARPANET прекратила своё существование в июне 1990 года.

В 1969 году Министерство обороны США посчитало, что на случай войны Америке нужна надёжная система передачи информации. Агентство передовых исследовательских проектов (ARPA) предложило разработать для этого компьютерную сеть. Разработка такой сети была поручена Калифорнийскому университету в Лос-Анджелесе, Стэнфордскому исследовательскому центру, Университету Юты и Университету штата Калифорния в Санта-Барбаре.

Первое испытание технологии произошло 29 октября 1969 года в 21:00. Сеть состояла из двух терминалов, первый из которых находился в Калифорнийском университете, а второй на расстоянии 600 км от него — в Стэнфордском университете. Тестовое задание заключалось в том, что первый оператор вводил слово «LOG», а второй должен был подтвердить, что он видит его у себя на экране. Первый эксперимент оказался неудачным, отобразились только буквы «L» и «O». Через час эксперимент был повторен и все прошло успешно.

Компьютерная сеть была названа ARPANET, в рамках проекта сеть объединила четыре указанных научных учреждения, все работы финансировались за счёт Министерства обороны США. Затем сеть ARPANET начала активно расти и развиваться, её начали использовать учёные из разных областей науки. В 1973 году к сети были подключены первые иностранные организации из Великобритании и Норвегии, сеть стала международной. Стоимость пересылки электронного письма по сети ARPANET составляла 50 центов. В 1979 г. ее участниками были США, СССР, Канада, Япония, а также 17 стран Европы. В 1984 году у сети ARPANET появился серьёзный соперник, Национальный фонд науки США (NSF) основал обширную межуниверситетскую сеть NSFNet, которая имела гораздо большую пропускную способность (56 кбит/с), нежели ARPANET. В 1990 году сеть ARPANET прекратила своё существование, полностью проиграв конкуренцию NSFNet.

Цели проекта ARPANET:

-​ проведение экспериментов в области компьютерных коммуникаций;

-​ объединение научного потенциала исследовательских учреждений;

-​ изучение способов поддержания устойчивой связи в условиях ядерного нападения;

-​ разработка концепции распределённого управления военными и гражданскими структурами в период ведения войны.

Фидонет (от англ. FidoNet,; коротко Фидо) — международная любительская компьютерная сеть, построенная по технологии «из точки в точку». Изначально программное обеспечение FidoNet разрабатывалось под MS-DOS, однако в скором времени было портировано под все распространённые операционные системы, включая UNIX, GNU/Linux, Microsoft Windows, OS/2 и Mac OS.

Была популярна в начале 1990-х годов (в бывшем СССР — до конца 1990-х), после чего началось сокращение числа узлов сети. Сеть продолжает функционировать, в мае 2009 года в ней состояло более 5500 узлов.

 

30.​ Классификация компьютерных сетей: по территориальной распространенности; по типу сетевой топологии.

I.​ По территориальной распространенности выделяют:

1)​ PAN (Personal Area Network) — персональная сеть, предназначенная для взаимодействия различных устройств, принадлежащих одному владельцу;

2)​ LAN (Local Area Network) — локальные сети, имеющие замкнутую инфраструктуру до выхода на поставщиков услуг. Термин «LAN» может описывать и маленькую офисную сеть, и сеть уровня большого завода, занимающего несколько сотен гектаров. Зарубежные источники дают даже близкую оценку — около шести миль (10 км) в радиусе. Локальные сети являются сетями закрытого типа, доступ к ним разрешен только ограниченному кругу пользователей, для которых работа в такой сети непосредственно связана с их профессиональной деятельностью;

3)​ CAN (Campus Area Network) — кампусная сеть, объединяет локальные сети близко расположенных зданий;

4)​ MAN (Metropolitan Area Network) — городские сети между учреждениями в пределах одного или нескольких городов, связывающие много локальных вычислительных сетей;

5)​ WAN (Wide Area Network) — глобальная сеть, покрывающая большие географические регионы, включающие в себя как локальные сети, так и прочие телекоммуникационные сети и устройства. Пример WAN — сети с коммутацией пакетов (Frame relay), через которую могут «разговаривать» между собой различные компьютерные сети. Глобальные сети являются открытыми и ориентированы на обслуживание любых пользователей;

6)​ Термин «корпоративная сеть» используется в литературе для обозначения объединения нескольких сетей, каждая из которых может быть построена на различных технических, программных и информационных принципах.

 

III.​ По типу сетевой топологии:

1)​ базовых топологии: шина, кольцо, звезда;

2)​ дополнительные (производные) топологии: двойное кольцо, ячеистая топология, решётка, дерево, Fat Tree, полносвязная. Дополнительные способы являются комбинациями базовых. В общем случае такие топологии называются смешанными или гибридными, но некоторые из них имеют собственные названия, например «Дерево».

31.​ Сетевая топология: определение, физическая, логическая, информационная, управления обменом. Основные и дополнительные (производные) топологии.

Сетевая топология (от греч. τόπος, - место) — способ описания конфигурации сети, схема расположения и соединения сетевых устройств.

Сетевая топология может быть:

1)​ физической — описывает реальное расположение и связи между узлами сети;

2)​ логической — описывает хождение сигнала в рамках физической топологии;

3)​ информационной — описывает направление потоков информации, передаваемых по сети;

4)​ управления обменом — это принцип передачи права на пользование сетью.

III.​ По типу сетевой топологии:

1)​ основные (базовые) топологии: шина, кольцо, звезда;

2)​ дополнительные (производные) топологии: двойное кольцо, ячеистая топология, решётка, дерево, Fat Tree, полносвязная. Дополнительные способы являются комбинациями базовых. В общем случае такие топологии называются смешанными или гибридными, но некоторые из них имеют собственные названия, например «Дерево».

 

 

32.​ Кольцевая, звездообразная, шинная топологии: определение, схема, достоинства, недостатки.

Кольцо — это топология, в которой каждый компьютер соединен линиями связи только с двумя другими: от одного он только получает информацию, а другому только передает (рис. 6.4). На каждой линии связи, как и в случае звезды, работает только один передатчик и один приемник. Это позволяет отказаться от применения внешних терминаторов.

Рис. 6.4. Кольцевая топология.

Работа в сети кольца заключается в том, что каждый компьютер ретранслирует (возобновляет) сигнал, то есть выступает в роли репитера, потому затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Четко выделенного центра в этом случае нет, все компьютеры могут быть одинаковыми. Однако достаточно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует обмен. Понятно, что наличие такого управляющего абонента снижает надежность сети, потому что выход его из строя сразу же парализует весь обмен.
Компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии). Одни из них обязательно получают информацию от компьютера, который ведет передачу в этот момент, раньше, а другие – позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на «кольцо». В этих методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру.
Подключение новых абонентов в «кольцо» обычно совсем безболезненно, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае топологии «шина», максимальное количество абонентов в кольце может быть достаточно большое (до тысячи и больше). Кольцевая топология обычно является самой стойкой к перегрузкам, она обеспечивает уверенную работу с самыми большими потоками переданной по сети информации, потому что в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды).

В кольце, в отличие от других топологий (звезда, шина), не используется конкурентный метод посылки данных, компьютер в сети получает данные от стоящего предыдущим в списке адресатов и перенаправляет их далее, если они адресованы не ему. Список адресатов генерируется компьютером, являющимся генератором маркера. Сетевой модуль генерирует маркерный сигнал (обычно порядка 2-10 байт во избежание затухания) и передает его следующей системе (иногда по возрастанию MAC-адреса). Следующая система, приняв сигнал, не анализирует его, а просто передает дальше. Это так называемый нулевой цикл.

Последующий алгоритм работы таков — пакет данных GRE, передаваемый отправителем адресату начинает следовать по пути, проложенному маркером. Пакет передаётся до тех пор, пока не доберётся до получателя.

Достоинства: простота установки; практически полное отсутствие дополнительного оборудования; возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети, поскольку использование маркера исключает возможность возникновения коллизий.

Недостатки: выход из строя одной рабочей станции, и другие неполадки (обрыв кабеля), отражаются на работоспособности всей сети; сложность конфигурирования и настройки; сложность поиска неисправностей; необходимость иметь две сетевые платы, на каждой рабочей станции.

Наиболее широкое применение получила в волоконно-оптических сетях. Используется в стандартах FDDI, Token ring.

Звезда́ — базовая топология компьютерной сети, в которой все компьютеры сети присоединены к центральному узлу (обычно коммутатор), образуя физический сегмент сети. Подобный сегмент сети может функционировать как отдельно, так и в составе сложной сетевой топологии (как правило, «дерево») (рис. 6.5). Весь обмен информацией идет исключительно через центральный компьютер, на который таким способом возлагается очень большая нагрузка, поэтому ничем другим, кроме сети, он заниматься не может. Как правило, именно центральный компьютер является самым мощным, и именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе не возможны, потому что управление полностью централизовано.

Рис. 6.5. Звездообразная топология.

Рабочая станция, с которой необходимо передать данные, отсылает их на концентратор. В определённый момент времени только одна машина в сети может пересылать данные, если на концентратор одновременно приходят два пакета, обе посылки оказываются не принятыми и отправителям нужно будет подождать случайный промежуток времени, чтобы возобновить передачу данных. Этот недостаток отсутствует на сетевом устройстве более высокого уровня — коммутаторе, который, в отличие от концентратора, подающего пакет на все порты, подает лишь на определенный порт — получателю. Одновременно может быть передано несколько пакетов. Сколько — зависит от коммутатора.

Активная звезда – это когда в центре сети содержится компьютер, который выступает в роли сервера.

Пассивная звезда – в центре сети с данной топологией содержится не компьютер, а концентратор, или коммутатор, что выполняет ту же функцию, что и повторитель. Он возобновляет сигналы, которые поступают, и пересылает их в другие линии связи.

Достоинства: выход из строя одной рабочей станции не отражается на работе всей сети в целом; хорошая масштабируемость сети; лёгкий поиск неисправностей и обрывов в сети; высокая производительность сети (при условии правильного проектирования); гибкие возможности администрирования.

Недостатки: выход из строя центрального концентратора обернётся неработоспособностью сети (или сегмента сети) в целом; для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий; конечное число рабочих станций в сети (или сегменте сети) ограничено количеством портов в центральном концентраторе.

Одна из наиболее распространённых топологий, поскольку проста в обслуживании. В основном используется в сетях, где носителем выступает кабель витая пара UTP категории 3 или 5.

 

Топология типа общая шина (рис. 6.2), представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала.

Рис. 6.2. Шинная топология.

Топология общая шина предполагает использование одного кабеля, к которому подключаются все компьютеры сети. Отправляемое рабочей станцией сообщение распространяется на все компьютеры сети. Каждая машина проверяет — кому адресовано сообщение и если ей, то обрабатывает его. Принимаются специальные меры для того, чтобы при работе с общим кабелем компьютеры не мешали друг другу передавать и принимать данные. Для того, чтобы исключить одновременную посылку данных, применяется либо «несущий» сигнал, либо один из компьютеров является главным и «даёт слово» „МАРКЕР“ остальным станциям. Шина самой своей структурой допускает идентичность сетевого оборудования компьютеров, а также равноправие всех абонентов. При таком соединении компьютеры могут передавать информацию только по очереди, потому что линия связи единственная. В противном случае переданная информация будет искажаться в результате наложения (конфликта, коллизии). Таким образом, в шине реализуется режим полудуплексного (half duplex) обмена (в обоих направлениях, но по очереди, а не одновременно).

В топологии «шина» отсутствует центральный абонент, через которого передается вся информация, которая увеличивает ее надежность (ведь при отказе любого центра перестает функционировать вся управляемая этим центром система). Добавление новых абонентов в шину достаточно простое и обычно возможно даже во время работы сети. В большинстве случаев при использовании шины нужно минимальное количество соединительного кабеля по сравнению с другой топологией. Правда, нужно учесть, что к каждому компьютеру (кроме двух крайних) подходит два кабеля, что не всегда удобно.

Шине не страшны отказы отдельных компьютеров, потому что все другие компьютеры сети могут нормально продолжать обмен. Кроме того, так как используется только один кабель, в случае обрыва нарушается работа всей сети. Может показаться, что шине не страшен и обрыв кабеля, поскольку в этом случае остаются две полностью работоспособных шины. Однако из-за особенности распространения электрических сигналов по длинным линиям связи необходимо предусматривать включение на концах шины специальных устройств — Терминаторов.

Без включения терминаторов сигнал отражается от конца линии и искажается так, что связь по сети становится невозможной. Таким образом, при разрыве или повреждении кабеля нарушается согласование линии связи, и прекращается обмен даже между теми компьютерами, которые остались соединенными между собой. Короткое замыкание в любой точке кабеля шины выводит из строя всю сеть. Надежность здесь выше, так как выход из строя отдельных компьютеров не нарушит работоспособность сети в целом. Поиск неисправности в сети затруднен. Любой отказ сетевого оборудования в шине очень трудно локализовать, потому что все адаптеры включены параллельно, и понять, который из них вышел из строя, не так-то просто.

При построении больших сетей возникает проблема ограничения на длину связи между узлами, в таком случае сеть разбивают на сегменты. Сегменты соединяются различными устройствами — повторителями, концентраторами или хабами. Например, технология Ethernet позволяет использовать кабель длиной не более 185 метров (рис. 6.3).

Рис. 6.3. Технология Ethernet с шинной топологией.

Достоинства шинной топологии: небольшое время установки сети; дешевизна (требуется меньше кабеля и сетевых устройств); простота настройки; выход из строя рабочей станции не отражается на работе сети.

Недостатки: неполадки в сети, такие как обрыв кабеля и выход из строя терминатора, полностью блокируют работу всей сети; сложная локализация неисправностей; с добавлением новых рабочих станций падает производительность сети.

 

 

33.​ Определение локальной сети. Основные и вспомогательные компьютеры локальных сетей. Понятие протокола и интерфейса.

локальная сеть – это совокупность двух и более компьютеров, объединенных коммуникационными связями с целью распределения сетевых аппаратно-программных, информационных и др. ресурсов. Локальные сети могут объединяться в корпоративные (крупных предприятий и компаний) и региональные сети. Корпоративные и региональные сети, в свою очередь, могут объединяться в глобальные (страны, международные). Объединение глобальных сетей представляет собой суперглобальную сеть (сеть сетей) Интернет.

Сетевые ЭВМ принято делить на основные и вспомогательные. К основным относятся ЭВМ-клиенты, к вспомогательным – серверы, хост-ЭВМ (host). Клиент – это ЭВМ, посылающее запрос к серверу. Сервер – персональная или виртуальная ЭВМ, выполняющая функции по обслуживанию клиента и распределяющая сетевые ресурсы (принтеры, базы данных, программы, внешнюю память и др.). Хост-ЭВМ – это ЭВМ, установленная в узлах сети и решающая вопросы коммутации в сети.

Правила взаимодействия разных систем одного уровня называют протоколом, правила взаимодействия соседних уровней в одной системе – интерфейсом.

34.​ Среды доступа локальных сетей. Средства маршрутизации локальных сетей.

Компьютеры могут соединяться между собой, используя различные среды доступа: медные проводники (витая пара), оптические проводники (оптические кабели) и через радиоканал (беспроводные технологии). Проводные связи устанавливаются через Ethernet, беспроводные — через Wi-Fi, Bluetooth, GPRS и прочие средства. Отдельная локальная вычислительная сеть может иметь шлюзы с другими локальными сетями, а также быть частью глобальной вычислительной сети (например, Интернет) или иметь подключение к ней.

Чаще всего локальные сети построены на технологиях Ethernet или Wi-Fi. Следует отметить, что ранее использовались протоколы Frame Relay, Token ring, которые на сегодняшний день встречаются всё реже, их можно увидеть лишь в специализированных лабораториях, учебных заведениях и службах. Для построения простой локальной сети используются маршрутизаторы, коммутаторы, точки беспроводного доступа, беспроводные маршрутизаторы, модемы и сетевые адаптеры. Реже используются преобразователи (конвертеры) среды, усилители сигнала (повторители разного рода) и специальные антенны.

Важными составляющими сетей являются средства маршрутизации: повторители, мосты, маршрутизаторы, шлюзы. Повторитель – самый простой тип устройства для соединения однотипных ЛВС, он ретранслирует все принимаемые пакеты из одной ЛВС в другую. Мост – устройство связи, позволяющее соединить ЛВС с одинаковыми и разными системами сигналов. Маршрутизатор – устройство связи, аналогичное мосту, выполняющее функции передачи пакетов в соответствии с определенными протоколами, обеспечивающее соединение ЛВС на сетевом уровне. Шлюз – устройство соединения ЛВС с глобальной сетью.

 

35.​ Уровни локальных сетей.

ISO установила семь уровней сети: 1 – физический, 2 – канальный, 3 – сетевой, 4 – транспортный, 5 – сеансовый, 6 – представительный, 7 – прикладной.

Первый уровень (физический) определяет некоторые физические характеристики канала.

Второй уровень (канальный) управляет передачей данных между двумя узлами сети.

Третий уровень (сетевой) обеспечивает управление потоком, маршрутизацию.

Четвертый уровень (транспортный) отвечает за стандартизацию обмена данными между программами, находящимися на разных ЭВМ сети.

Пятый уровень (сеансовый) определяет правила диалога прикладных программ, проверки прав доступа к сетевым ресурсам.

Шестой уровень (представительный) определяет форматы данных, алфавиты, коды представления специальных и графических символов.

Седьмой уровень (прикладной) определяет уровень услуг (электронная почта, телекс, телефакс, видеотекст, телетекст и др.).

 

36.​ Классификация локальных сетей по способу передачи информации.

По способу передачи информации сети принято делить на: коммутации каналов; коммутации сообщений; коммутации пакетов; интегральные сети.

Сети коммутации каналов обеспечивают прямое соединение клиентов, которое остается неизменным в течении всего сеанса.

При коммутации сообщений информация передается порциями, называемыми сообщениями. Прямое сообщение не устанавливается. Передача сообщения начинается после освобождения первого канала и так далее, пока сообщение не дойдет до адресата. Каждым сервером осуществляется прием информации, ее сбор.

При коммутации пакетов обмен производится короткими пакетами фиксированной структуры. Пакет – часть сообщения, удовлетворяющая некоторому стандарту. Малая длина пакетов предотвращает блокировку линий связи, не дает расти очереди в узлах коммутации. Это обеспечивает быстрое соединение, низкий уровень ошибок, надежность и эффективность использования сети.

Интегральные сети – сети, обеспечивающие коммутацию каналов, сообщений и пакетов. Они объединяют несколько коммутационных сетей.

 

37.​ Распределенная обработка данных в локальных сетях.

К одному из важных видов сетевых технологий относится распределенная обработка данных. Ее особенность – ПЭВМ стоят на рабочих местах, т.е. на местах возникновения и использования информации; они соединены каналами связи, что дает возможность распределять их ресурсы по отдельным функциональным сферам деятельности и изменить технологию обработки данных в направлении децентрализации.

Следует различать распределенную обработку данных и распределенную базу данных. В первом случае база данных находится на сервере, а обработка осуществляется на компьютерах-клиентах. Во втором случае – база данных размещается на нескольких серверах.

В системе распределенной обработки данных клиент работает в режиме запросов. Он может послать запрос к собственной локальной базе или удаленной. Удаленный запрос – единичный запрос к одному серверу. Несколько удаленных запросов к одному серверу объединяются в удаленную транзакцию. Если отдельные запросы транзакций обрабатываются различными серверами, то транзакция называется распределенной. При этом один запрос транзакций обрабатывается одним сервером. Распределенная база данных позволяет обрабатывать один запрос несколькими серверами. Такой запрос называется распределенным.

Различают централизованную , децентрализованную и смешанную технологии распределенной обработки данных. При централизованной обработке данных на одном сервере находится единственная копия базы данных. Все операции с базой данных обеспечиваются этим сервером. Доступ к данным выполняется с помощью удаленного запроса и удаленной транзакции.

Децентрализованная организация данных предполагает разбиение информационной базы на несколько физически распределенных. Каждый клиент пользуется своей базой данных, которая может быть либо частью общей информационной базы, либо копией информационной базы в целом.

Смешанная организация данных объединяет оба способа.

 

38.​ Определение Интернет. Протокол TCP/IP. Виды адресов.

Интернет (англ. Internet) — всемирная система объединённых компьютерных сетей, построенная на использовании протокола IP и маршрутизации пакетов данных. Интернет образует глобальное информационное пространство, служит физической основой для Всемирной паутины (WWW, World Wide Web) и множества других систем (протоколов) передачи данных. Часто упоминается как «Всемирная сеть» и «Глобальная сеть».

Протокол IP был специально создан агностическим в отношении физических каналов связи. То есть любая система (сеть) передачи цифровых данных, проводная или беспроводная, для которой существует стандарт инкапсуляции в неё IP-пакетов, может передавать и трафик Интернета. Агностицизм протокола IP, в частности, означает, что компьютер или маршрутизатор должен знать тип сетей, к которым он непосредственно присоединён, и уметь работать с этими сетями; но не обязан (и в большинстве случаев не может) знать, какие сети находятся за маршрутизаторами.

На стыках сетей специальные маршрутизаторы (программные или аппаратные) занимаются автоматической сортировкой и перенаправлением пакетов данных, исходя из IP-адресов получателей этих пакетов. Протокол IP образует единое адресное пространство в масштабах всего мира, но в каждой отдельной сети может существовать и собственное адресное подпространство, которое выбирается исходя из класса сети. Такая организация IP-адресов позволяет маршрутизаторам однозначно определять дальнейшее направление для каждого пакета данных. В результате между отдельными сетями Интернета не возникает конфликтов, и данные беспрепятственно и точно передаются из сети в сеть по всей планете и ближнему космосу.

Сам протокол IP был рождён в дискуссиях внутри организации IETF (англ. Internet Engineering Task Force; Task force — группа специалистов для решения конкретной задачи), чьё название можно вольно перевести как «Группа по решению задач проектирования Интернета». IETF и её рабочие группы по сей день занимаются развитием протоколов Всемирной сети. IETF открыта для публичного участия и обсуждения. Комитеты организации публикуют так называемые документы RFC. В этих документах даются технические спецификации и точные объяснения по многим вопросам. Некоторые документы RFC возводятся организацией IAB (англ. Internet Architecture Board — Совет по архитектуре Интернета) в статус стандартов Интернета (англ. Internet Standard). С 1992 года IETF, IAB и ряд других интернет-организаций входят в Общество Интернета (англ. Internet Society , ISOC). Общество Интернета предоставляет организационную основу для разных исследовательских и консультативных групп, занимающихся развитием Интернета.

Свобода доступа пользователей Интернета к информационным ресурсам не ограничивается государственными границами и/или национальными доменами, но языковые границы сохраняются. Преобладающим языком Интернета является английский язык. Вторым по популярности является китайский язык, а третьим — испанский. Русский язык занимает 9 место.

Язык является одним из часто используемых признаков деления Интернета, наряду с делением по государствам, регионам и доменам первого уровня. Название языковых сфер Интернета даётся по названию используемого языка. Русскоязычная сфера Интернета получила название «Русский Интернет», сокращённо Рунет.

Виды адресов: цифровой, доменный, URL.

 

39.​ Определения: провайдер, браузер, Рунет, сайт, веб-портал. Наиболее известные сервисы в Интернет.

 

Провайдер (от англ. provider) — компания, поставщик каких-либо услуг.

Браузер — компьютерная программа для просмотра веб-страниц. Существует довольно много браузеров. Самые популярные из них — это Microsoft Internet Explorer, Mozilla Firefox, Google Chrome, Safari и Opera.

Рунет — русскоязычная часть всемирной сети Интернет. Более узкое определение гласит, что Рунет — это часть Всемирной паутины, принадлежащая к национальным доменам .su, .ru и .рф. 1987—94 годы стали ключевыми в зарождении русскоязычного Интернета. 28 августа 1990 года профессиональная научная сеть, выросшая в недрах Института атомной энергии им. И. В. Курчатова и ИПК Минавтопрома и объединившая учёных-физиков и программистов, соединилась с мировой сетью Интернет, положив начало современным российским сетям. 19 сентября 1990 года был зарегистрирован домен первого уровня .su в базе данных Международного информационного центра InterNIC. В результате этого Советский Союз стал доступен через Интернет. 7 апреля 1994 года в InterNIC был зарегистрирован российский домен .ru.

Домен «.рф», позволяющий использовать в адресе URL кириллические символы, делегирован в корневой зоне DNS 12 мая 2010 года около 17:20 по московскому времени. По статистике Технического центра «Интернет», на конец 2010 года в зоне .рф зарегистрировано около 700 000 доменов, около 350 000 из них делегировано. По данным Координационного центра национального домена сети Интернет, из доменных имен в зоне .рф, зарегистрированных к настоящему времени, только 8 % представляют собой общеупотребительные слова русского языка. Еще 30 % образованы несколькими словами, все остальные домены представляют собой имена людей, литературных персонажей, названий компаний. Подавляющее большинство имен принадлежит владельцам товарных знаков. Почти половина имен была зарегистрирована в Москве, еще 9 % — в Московской области, 8 % — в Санкт-Петербурге.

Сайт (от англ. website: web — «паутина, сеть» и site — «место», буквально «место, сегмент, часть в сети») — совокупность электронных документов (файлов) частного лица или организации в компьютерной сети, объединённая под одним адресом (доменным именем или IP-адресом).

Веб-портал — сайт в компьютерной сети, который предоставляет пользователю различные интерактивные интернет-сервисы, которые работают в рамках этого сайта. Веб-портал может состоять из нескольких сайтов.

Наиболее известные сервисы в Интернет.

· (Социальные сети — например, Facebook, Twitter; Специализированные социальные сети — например, MySpace, Flickr).

В зоне .RU уже более 3 млн. сайтов. Самые популярные на июль 2011 года:

- «Яндекс» (yandex.ru) — поисковая система и мультисервисный портал.

- «Google» (google.ru) — поисковая система и мультисервисный портал (российское представительство).

- «Mail.ru» (mail.ru) — почтовый сервис и мультисервисный портал.

- «Google» (google.com) — поисковая система и мультисервисный портал.

- «В Контакте» (vkontakte.ru) — крупнейшая в Рунете социальная сеть.

- «YouTube» (youtube.com) — сервис предоставляющий услуги хостинга видеоматериалов.

- «Facebook» (facebook.com) — самая большая социальная сеть.

- «Wikipedia» (wikipedia.org) — свободная мультиязычная универсальная энциклопедия.

- «Живой Журнал» (livejournal.com) — блог-платформа для ведения онлайн-дневников.

- «Одноклассники.ru» (odnoklassniki.ru) — социальная сеть, русскоязычный аналог сайта Classmates.com.

 

40.​ Практика использования сетевых технологий в деятельности юриста: характеристика массива правовой информации в Интернет и информационного сопровождения юридической деятельности;

Огромное значение для юристов в настоящее время играет Интернет, содержащий огромный массив правовой и иной (связанной с правом) информации:

- нормативная правовая информация;

- судебная практика;

- международные аспекты существования и развития правовой системы;

- правовая литература, комментарии к законодательству;

- аналитическая правовая информация;

- фактографический материал (факты правовой действительности);

- новостные, статистические, аналитические материалы;

- околоправовая информация (о негативных сторонах правовой жизни);

- контрправовая информация (различные советы, как нарушить закон).

В настоящее время почти все Министерства РФ и его крупные структурные подразделения имеют Web-сайты и Web -порталы, на которых размещены поименованные виды правовой информации, за исключением двух последних. Во всяком случае основные виды нормативной правовой информации там обязательно имеются.

 

41.​ Практика использования сетевых технологий в деятельности юриста: сайт как средство массовой коммуникации для юристов; юридические спецпроекты.



Дата: 2019-02-25, просмотров: 240.