Источником инфекции являются живот ные— больные или носители. Человек как источник инфекции, за редким исключением (например, при чуме), особой роли не играет, случаи заражения человека человеком крайне редки или вообще не наблюдаются, так как при ряде инфекций, например при бруцеллезе, человек является биологическим тупиком.
Большинство зоонозов является природно-очаговыми заболеваниями. Природные очаги сформировались в глубокой древности в ходе эволюции паразитизма. Они представляют собой обширные географические ландшафты, к границам которых приурочен ареал распространения в природе вида или видов животных, являющихся резервуаром данной инфекции в природе. Если в эпидемическом процессе имеется переносчик, то и его ареал также приурочен к границам данного природного очага. Эпидемический процесс
(эпизоотия) в популяции животных протекает автономно, без участия человека по законам саморегуляции. Увеличение численности популяции животных за счет естественного прироста ведет к активизации механизмов передачи и подъему эпизоотии, что ведет к гибели части популяции, а другая часть, переболев, приобретает иммунитет. В связи с этим иммунная прослойка в популяции увеличивается, и эпизоотия идет на убыль, переходит в фазу резервации. С появлением новых поколений неиммунных животных в популяции вновь увеличивается численность неиммунной прослойки, и эпизоотия, переходя в фазу распространения, вспыхивает с новой силой. После чего все повторяется сначала. Таким образом, эпизоотия протекает бесконечно с циклическими колебаниями. Человек вовлекается в эпидпроцесс при зоонозах вторично, в результате освоения территории природного очага, поэтому с филогенетических позиций человек является очень молодым, по сравнению с животными, участником эпидпроцесса. Если природные очаги сформировались десятки и сотни тысяч лет тому назад, то человек участвует в эпидпроцессе при зоонозных инфекциях сотни, максимум тысячи лет.
Поскольку с эволюционных позиций человек недавно стал участником эпидпроцесса при зоонозах, то, в отличие от животных, за столь короткий интервал времени его организм не успел выработать адаптационных механизмов к возбудителям зоонозов; микробы также не успели как следует адаптироваться к организму человека. У возбудителей
зоонозов в связи с этим отсутствует орган ный тропизм, т. е. избирательность поражения органов и тканей организма человека, они особны поражать практически любой орган и любую тканьа следовательно, и передаваться с помощью различных механизмов и путей. Таким образом, Эпидемиология зоонозов характеризуется множеством механизмов, путей и факторов передачи.
Возбудители зоонозов являются полипатогенными микробами, они способны поражать большое количество различных видов животных. Так, например, возбудитель чумы — около 250, туляремии — около 50 видов. Это придает высокую стабильность природным очагам, делая их практически неуничтожаемыми.
Зоонозами обычно заражаются и болеют лица, связанные по роду своей работы с животными: скотники, чабаны, пастухи, доярки, конюхи, ветеринарные врачи, охотники, скорняки, забойщики на мясокомбинатах и т.д., поэтому этим инфекциям присущ профессиональный характер.
Так как организм человека плохо адаптирован к возбудителям зоонозных инфекций, то клинически зоонозы протекают очень тяжело, с высокой летальностью. Клиническая картина зависит не столько от вида возбудителя, сколько определяется пораженным органом.
Микробиологическая диагностика проводится в лабораториях особо опасных инфекций, так как возбудители зоонозов по степени опасности относятся к 1-й и 2-й группам микробов. При лабораторной диагностике используются все пять методов микробиологической диагностики. Однако, учитывая биологическую опасность, все работы, связанные с их чистыми культурами, могут проводиться только
в режимных лабораториях. В базовых лабораториях допускается проведение микробиологической диагностики зоонозных инфекций, но с использованием методов, не связанных с выделением чистой культуры. Поскольку от правильности и быстроты установления этиологического диагноза зависит своевременность, адекватность и, следовательно, эффективность лечебных и противоэпидемических мероприятий, в диагностике зоонозов широко используются методы экспресс-диа гностики (РИФ, ИФА, ПЦР, фагодиагностика и др.). Возбудители зоонозов вызывают сенсибилизацию организма, поэтому для их диагностики применяются кожно-аллергические пробы с соответствующими диагностическими аллергенами (пестин при чуме, тулярин при туляремии, бруцеллин при бруцеллезе и антраксин при сибирской язве).
Лечение большинства бактериальных зоонозов в настоящее время при своевременно пос тавленном диагнозе весьма эффективно, так как возбудители бактериальных зоонозов чувс твительны к антибиотикам.
Специфическая профилактика проводится эпидемическим показаниям иммунизацией живыми и другими вакцинами. Специфическая профилактика направлена на санитарную охрану территории, чтобы не допустить завоз этих возбудителей в страну или распространение их за пределы природных очагов, а также проведение санитарно-ветеринарных мероприятий.
Учитывая высокую биологическую опасность возбудителей зоонозов, особенно чумы, сибирской язвы, туляремии и др., они рассматриваются как потенциальные агенты для использования в качестве бактериологического оружия.
ГЛАВА 17. ЧАСТНАЯ ВИРУСОЛОГИЯ
РНК-содержащие вирусы
17.1.1. Пикорнавирусы (семейство Picornaviridae)
Picornaviridae (исп. pico — малый, rna — рибонуклеиновая кислота) — семейство бе-зоболочечных вирусов, содержащих одно-нитевую плюс РНК. Семейство насчитывает более 230 представителей и состоит из 8 родов: Enterovirus (111 серотипов), Rhinovirus (105 серотипов), Aphtovirus (7 серотипов), Hepatovirus (2 серотипа — 1 человека. 1 — обезьяны), Cardiovirus (2 серотипа); Parecovirus, Erbovirus, Kobuvirus — названия новых родов. Роды состоят из видов, виды — из серотипов.
Структура. Пикорнавирусы относятся к мелким просто организованным вирусам. Диаметр вируса — около 30 нм. Вирион состоит из икосаэдрического капсида, окружающего инфекционную однонитевую плюс РНК с протеином VPg (рис. 17.1).
Капсид состоит из 12 пятиугольников (пен-тамеров), каждый из которых, в свою очередь, состоит из 5 белковых субъединиц — прото-меров. Протомеры образованы 4 вирусными полипептидами: VP1, VP2, VP3, VP4.
Репродукция. Вирус взаимодействует с рецепторами на поверхности клетки (рис. 17.2). Геном вируса может поступить в клетку путем эндоцитоза (1) с последующим выходом нуклеиновой кислоты (2) из вакуоли или путем инъекции РНК через цитоплазматическую мембрану (1) клетки. На конце РНК имеется вирусный протеин (3) — VPg. Геном используется, как иРНК, для синтеза белка {4, 5). Один большой полипротеин (4) транслируется с вирусного генома. Затем полипротеин расщепляется на индивидуальные вирусные протеины, включая РНК-зависимую поли-меразу Полимераза синтезирует минус-нить матрицу с поверхности плюс-нити и реплицирует геном. VPg ковалентно присоединяется к 5'-концу вирусного генома. Структурные
белки собираются в капсид (<5), в него включается геном, образуя вирион. Вирионы освобождаются из клетки посредством ее лизиса. Репродукция происходит в цитоплазме клеток и сопровождается цитопатическим действием. В культуре клеток под агаровым покрытием вирусы образуют бляшки.
17.1.1.1. Энтеровирусы
Энтеровирусы (от греч. enteron — кишка) — группа вирусов, обитающая преимущественно в кишечнике человека и вызывающая разнообразные по клиническим проявлениям болезни человека.
Энтеровирусы — РНК-содержащие вирусы семейства Picornaviridae рода Enterovirus . Род включает вирусы полиомиелита, Коксаки А и В (по названию населенного пункта в США, где они были впервые выделены), ECHO (аббревиатура от англ. Enteric cytopathogenic human orphan viruses — кишечные цитопатогенные человеческие вирусы сироты), энтеровирусы типов 68, 69, 70, 71 и др. В настоящее время имеются другие варианты классификации рода Enterovirus : например, энтеровирусы человека представлены видами полиовируса А, В, С и D, состоящими из серотипов.
Морфология и химический состав. Энтеровирусы — мелкие и наиболее просто организованные вирусы, имеют сферическую форму, диаметр 20—30 нм, состоят из одноцепочечной плюс-нитевой РНК и капсида с кубическим типом симметрии. Вирусы не имеют супер-капсидной оболочки. В их составе нет углеводов и липидов, поэтому они нечувствительны к эфиру и другим растворителям жира.
Культивирование. Большинство энтеровиру-сов (за исключением вирусов Коксаки А) хорошо репродуцируется в первичных и перевиваемых культурах клеток из тканей человека и сопровождается цитопатическим эффектом. В культурах клеток под агаровым покрытием энтеровирусы образуют бляшки.
Антигенная структура. Энтеровирусы имеют общие для всего рода группоспецифический и типоспецифические антигены.
Резистентность. Энтеровирусы устойчивы к факторам окружающей среды в широком диапазоне рН — от 2,5 до 11, поэтому они длительно (месяцами) сохраняются в воде,
почве, некоторых пищевых продуктах и на предметах обихода.
Многие дезинфектанты (спирт, фенол, поверхностно-активные вещества) малоэффективны в отношении энтеровирусов, однако последние погибают при действии УФ-лучей. высушивания, окислителей, формалина, температуре —50 °С в течение 30 мин, а при кипячении — в течение нескольких секунд.
Восприимчивость животных. Энтеровирусы различаются по патогенности для лабораторных животных. Вирусы Коксаки по патогенности для новорожденных мышей разделены на группы А и В. Вирусы ECHO непатогенны для всех видов лабораторных животных.
Эпидемиология и патогенез. Заболевания, вызываемые энтеровирусами, распространены повсеместно, отличаются массовым характером с преимущественным поражением детей.
Источником инфекции являются больные и носители. Из организма больного возбудители выделяются с носоглоточной слизью и фекалиями, из организма вирусоносителя — с фекалиями.
Энтеровирусы передаются через воду, почву, пищевые продукты, предметы обихода, загрязненные руки, через мух.
Водные и пищевые эпидемические вспышки энтеровирусных инфекций регистрируются в течение всего года, но наиболее часто в летние месяцы. В первые 1—2 недели болезни энтеровирусы выделяются из носоглотки, обуславливая воздушно-капельный путь передачи.
Возбудители инфекции проникают в организм человека через слизистые оболочки носоглотки и тонкой кишки, размножаются в их эпителиальных клетках и регионарных лимфатических узлах, затем попадают в кровь. Последующее распространение вирусов определяется их свойствами и состоянием больного.
Клиника. Энтеровирусы вызывают заболевания, характеризующиеся многообразием клинических проявлений, так как могут поражать различные органы и ткани: ЦНС (полиомиелит, полиомиелитоподобные заболевания (ми-алгия, миокардит), органы дыхания (острые респираторные заболевания), пищеварительный тракт (гастроэнтерит, диарея), кожные и слизистые покровы (конъюнктивит, лихорадочные заболевания с сыпью и без нее) и др.
Иммунитет. После перенесенной энтерови-русной инфекции формируется стойкий, но типоспецифический иммунитет.
Микробиологическая диагностика. Методы диагностики — вирусологический и серологический с парными сыворотками больного. Вирусы выделяют из носоглоточной слизи в первые дни болезни, из кала, цереброспинальной жидкости. У погибших больных вирусы выделяют из пораженных органов. При серодиагностике характерно нарастание титров антител к энтеровирусам в 4 раза и более с 4—5-го до 14-го дня болезни.
Лечение. Патогенетическое. Применяют препараты интерферона в первые дни заболевания и другие противовирусные препараты.
Профилактика. Для профилактики энтеро-вирусных инфекций (за исключением полиомиелита) специфические средства не применяют. Большое значение имеет неспецифическая профилактика: своевременное выявление и изоляция больных, санитарный надзор за работой пищевых предприятий, водоснабжением, удалением нечистот и отбросов. Детям, общавшимся с больными, рекомендуют ин-терфероновые препараты.
17.1.1.1.1. Вирусы полиомиелита
Полиомиелит — острое лихорадочное заболевание, которое иногда сопровождается поражением серого вещества (от греч. polios — серый) спинного мозга и ствола головного мозга, в результате чего развиваются вялые параличи и парезы мышц ног, туловища, рук.
Таксономия. Полиомиелит известен с глубокой древности. Вирусную этиологию болезни доказали К. Ландштайнер и Э. Поппер в 1909 г. Возбудитель полиомиелита относится к семейству Picornaviridae , роду Enterovirus , виду Poliovirus .
Структура. По структуре полиовирусы — типичные представители рода Enterovirus .
Антигенные свойства. Различают 3 серотипа внутри вида: 1, 2, 3, не вызывающие перекрестного иммунитета. Все серотипы патогенны для обезьян, у которых возникает заболевание, сходное по клиническим проявлениям с полиомиелитом человека.
Патогенез и клиника. Естественная восприимчивость человека к вирусам полиомиелита высокая. Входными воротами служат слизистые оболочки верхних дыхательных путей и пищеварительного тракта. Первичная репродукция вирусов происходит в лимфатических узлах глоточного кольца и тонкой кишки. Это обуславливает обильное выделение вирусов из носоглотки и с фекалиями еще до появления клинических симптомов болезни. Из лимфатической системы вирусы проникают в кровь (виремия), а затем в ЦНС, где избирательно поражают клетки передних рогов спинного мозга (двигательные нейроны). В результате этого возникают параличи мышц. В случае накопления в крови вируснейтрализующих антител, блокирующих проникновение вируса в ЦНС, ее поражения не наблюдается.
Инкубационный период продолжается в среднем 7—14 дней. Различают 3 клинические формы полиомиелита: паралитическую (1 % случаев), менингеальную (без параличей), абортивную (легкая форма). Заболевание начинается с повышения температуры тела, общего недомогания, головных болей, рвоты, болей в горле. Полиомиелит нередко имеет двухволновое течение, когда после легкой формы и наступившего значительного улучшения развивается тяжелая форма болезни. Паралитическую форму чаще вызывает вирус полиомиелита серотипа 1.
Иммунитет. После перенесенной болезни остается пожизненный типоспецифический иммунитет. Иммунитет определяется, в основном, наличием вируснейтрализующих антител, среди которых важная роль принадлежит местным секреторным антителам слизистой оболочки глотки и кишечника (местный иммунитет). Эффективный местный иммунитет играет важнейшую роль в прерывании передачи «диких» вирусов и способствует вытеснению их из циркуляции. Пассивный естественный иммунитет сохраняется в течение 3—5 недель после рождения ребенка.
Микробиологическая диагностика. Материалом для исследования служат кал, отделяемое носоглотки, при летальных исходах — кусочки головного и спинного мозга, лимфатические узлы.
Вирусы полиомиелита выделяют путем заражения исследуемым материалом первич-
ных и перевиваемых культур клеток. О репродукции вирусов судят по цитопатическому действию. Идентифицируют (типируют) выделенный вирус с помощью типоспецифи-ческих сывороток в реакции нейтрализации в культуре клеток. Важное значение имеет внутривидовая дифференциация вирусов, которая позволяет отличить «дикие» патогенные штаммы от вакцинных штаммов, выделяющихся от людей, иммунизированных живой полиомиелитной вакциной. Различия между «дикими» и вакцинными штаммами выявляют с помощью И ФА, реакции нейтрализации цитопатического действия вируса в культуре клеток со штаммоспецифической иммунной сывороткой, а также в ПЦР.
Серодиагностика основана на использовании парных сывороток больных с применением эталонных штаммов вируса в качестве диагностикума. Содержание сывороточных иммуноглобулинов классов IgG, IgA, IgM определяют методом радиальной иммунодиф-фузии по Манчини.
Лечение. Патогенетическое. Применение гомологичного иммуноглобулина для предупреждения развития паралитических форм весьма ограничено.
Эпидемиология и специфическая профилак тика. Эпидемии полиомиелита охватывали в 1940—1950-х г.х тысячи и десятки тысяч человек, из которых 10% умирали и примерно 40 % становились инвалидами. Основной мерой профилактики полиомиелита является иммунизация. Массовое применение вакцины против полиомиелита привело к резкому снижению заболеваемости.
Первая инактивированная вакцина для профилактики полиомиелита была разработана американским ученым Дж. Солком в 1953 г. Однако парентеральная вакцинация этим препаратом создавала лишь общий гуморальный иммунитет, не формировала местной резистентности слизистых оболочек ЖКТ и не обеспечивала надежной специфической защиты.
Естественно аттенуированные штаммы вирусов полиомиелита всех трех типов получил в 1956 г. А. Сэбин, а в 1958 г. М. П. Чумаков и А. А. Смородинцев разработали первую перо-ральную живую культуральную вакцину из трех серотипов штаммов Сэбина. Вакцину исполь-
зуют для массовой иммунизации детей, она создает стойкий общий и местный иммунитет.
Всемирная организация здравоохранения в 1988 г приняла решение о глобальной ликвидации полиомиелита путем охвата прививками всего детского населения планеты. Под ликвидацией подразумевали прекращение заболеваний и искоренение вируса полиомиелита.
Использование оральной полиовакцины приве ло к практически полному исчезновению случаев полиомиелита в развитых странах Европы и в Америке и резкому снижению заболеваемости в развивающихся странах. В России случаи полиомиелита не регистрируются с 1 июля 2002 г.
У живой полиомиелитной вакцины имеются некоторые недостатки, наиболее серьезным из которых является возникновение случаев вакциноассоциированного полиомиелита у привитых и у контактных лиц, инфицированных вирусами, выделяемыми привитыми детьми. Контактное инфицирование происходит обычно вирусом одного серотипа.
Показано, что у иммунокомпетентных лиц отсутствует длительное носительство полиови-руса после вакцинации, в то время как у лиц с иммунодефицитами вакцинный штамм может выделяться в течение 7—10 лет. Риск развития вакциноассоциированного паралитического полиомиелита у лиц с иммунодефицитами, особенно с нарушениями В-клеточного иммунитета, выше, чем риск у иммунокомпетентных лиц.
Неспецифическая профилактика сводится к санитарно-гигиеническим мероприятиям: обеспечение населения доброкачественными водой, пищевыми продуктами, соблюдение личной гигиены; выявление больных и подозрительных на заболевание.
17.1.1.1.2. Вирусы Коксаки А и В
Вирусы Коксаки — РНК-содержащие вирусы семейства Picornaviridae рода Enterovirus . Вирусы названы по населенному пункту в США, где они были впервые выделены. По патогенности для новорожденных мышей вирусы разделены на группы А и В (29 серотипов): вирусы Коксаки А вызывают диффузный миозит и очаговый некроз поперечно-полосатых мышц; вирусы Коксаки В — поражение ЦНС, развитие параличей, некроз скелетной мускулатуры и — иногда — миокарда и др.
Вирусы Коксаки А вызывают у человека герпангину (герпетиформные высыпания на задней стенке глотки, дисфагия, лихорадка), пузырчатку в полости рта и конечностей, полиомиелитоподобные заболевания, диарею у детей; возможна сыпь.
Вирусы Коксаки В вызывают полиомиелитоподобные заболевания, энцефалит, миокардит, плевродинию (болезненные приступы в области груди, лихорадка, иногда плеврит).
Микробиологическая диагностика. Вирусологический метод: вирус выделяют из фекалий, отделяемого носоглотки, заражают культуры клеток HeLa или почек обезьян (Коксаки В, отдельные серотипы Коксаки А) или мышей-сосунков. Учитывают характер патологических изменений у зараженных мышей. Вирусы идентифицируют в РТГА, PC К, РН, ИФА.
17.1.1.1.3. Вирусы группы ECHO
Вирусы группы ECHO — РНК-содержащие вирусы семейства Picornaviridaepom Enterovirus ; насчитывают более 30 типов. Вирусы ECHO (от англ. Enteric cytopathogenic human orphans virus es — кишечные цитопатогенные человеческие вирусы-сироты) непатогенны для всех видов лабораторных животных. Вызывают ОРВИ, асептический менингит, полиомиелитоподобные заболевания; возможна сыпь.
Микробиологическаядиагностика. 1) Вирусологический метод: вирус выделяют из цереброспинальной жидкости, фекалий, отделяемого носоглотки; заражают культуры клеток почек обезьян. Вирусы идентифицируют в РТГА, РСК, РН, ИФА. 2) Серодиагностика: в сыворотке крови выявляют нарастание титра антител, используя РТГА, РСК, РН, ИФА.
17.1.1.2. Риновирусы
Риновирусы — РНК-содержащие вирусы семейства Picornaviridae рода Rhinovirus . Последний представлен 2 видами, состоящими из 100 серотипов, наиболее часто вызывающих острые инфекции верхних дыхательных путей (ОРВИ). Рецептором риновирусов является межклеточная адгезивная молекула I (ICAM-I), которая экспрессируется на эпителиальных клетках, фибробластах и эндоте-лиальных клетках. Риновирусы могут пере-
даваться двумя механизмами: аэрозольным и
контактно-бытовым. Проникают в организм
через нос, полость рта, конъюнктиву. Процесс
начинается в верхних дыхательных путях.
Микробиологическая диагностика.
1) Вирусологический метод: вирусы выделяют на культуре клеток, обнаруживают в РИФ.
2) Серологический метод: антитела выявляют в парных сыворотках крови пациента с помощью реакции нейтрализации.
17.1.1.3. Вирусы ящура
Вирусы ящура — РНК-содержащие вирусы семейства Picornaviridae рода Aphtovirus , состоящего из одного вида, представленного 7 серотипами. Вызывают ящур— зоонозную инфекционную болезнь, характеризующуюся лихорадочным состоянием, язвенными (афтозными) поражениями слизистой оболочки рта, кожи кистей и стоп у человека. Вирусы ящура по морфологии и химическому составу сходны с другими пикор-навирусами. Обладают высокой вирулентностью и дерматотропностью.
Вирус может длительно (несколько недель) выживать в объектах окружающей среды, в пищевых продуктах; чувствителен к дезин-фектантам. Естественным резервуаром вируса служат больные животные, особенно крупный рогатый скот. От больных животных вирус выделяется с молоком, со слюной и мочой. Человек заражается при уходе за больными животными, а также при употреблении сырого молока и молочных продуктов.
Восприимчивость человека к ящуру невысокая.
Микробиологическая диагностика. 1) Вирус выявляют в содержимом афт, слюне и крови путем заражения морских свинок, мышей-сосунков или культур клеток. 2) Для серодиагностики исследуют парные сыворотки крови в РСК, РН, РПГА, ИФА.
Профилактика. Профилактика ящура у человека — неспецифическая.
17.1.1.4. Вирус гепатита А
Вирусные гепатиты наносят огромный ущерб здоровью населения и экономике всех стран мира. Они подразделяются на энтераль-ные — гепатиты А и Е и парентеральные — гепатиты В, С, D, F, G и др. Вирусы парентеральных гепатитов описаны в гл. 17.6.
Вирус гепатита А вызывает острую инфекционную болезнь, характеризующуюся лихорадкой, преимущественным поражением печени, интоксикацией, иногда желтухой и отличающуюся склонностью к эпидемическому распространению. Антропоноз.
Заболевание (под другими названиями) известно с глубокой древности и описано еще Гиппократом в IV—V вв. до н. э. Вирус гепатита А открыт в 1973 г С. Фейнстоном.
Таксономия, морфология и антигенная струк тура. Вирус гепатита А относится к семейству Picornaviridae роду Hepatovirus . Типовой вид — вирус гепатита А — имеет один серотип. Это РНК-содержащий вирус, просто организованный, имеет диаметр 27—28 нм и один ви-русоспецифический антиген.
Культивирование. Вирус выращивают в культурах клеток. Цикл репродукции более длительный, чем у энтеровирусов, цитопати-ческий эффект не выражен.
Резистентность. Вирус гепатита А отличается большей, чем у энтеровирусов, устойчивостью к нагреванию; он сохраняется при 60 °С в течение 12 ч, инактивируется при кипячении в течение 5 мин. Относительно устойчив во внешней среде (воде, выделениях больных).
Восприимчивость животных. Экспериментальную инфекцию возможно воспроизвести на обезьянах мармозетах и шимпанзе.
Эпидемиология. Источником инфекции являются больные как с выраженными, так и с бессимптомными формами инфекции. Механизм заражения — фекально-оральный. Вирусы выделяются с фекалиями начиная со второй половины инкубационного периода и в начале клинических проявлений: в это время больные наиболее опасны для окружающих. С появлением желтухи интенсивность выделения вирусов снижается. Вирусы гепатита А передаются через воду, пищевые продукты, предметы обихода, грязные руки; в детских коллективах — через игрушки, горшки. Вирусы способны вызывать водные и пищевые эпидемические вспышки.
Гепатит А распространен повсеместно, но особенно в местах с дефицитом воды, плохими системами канализации и водоснабжения и низким уровнем гигиены населения.
Болеют преимущественно дети в возрасте от 4 до 15 лет. Подъем заболеваемости наблюдается в летние и осенние месяцы.
Патогенез. Вирус гепатита А обладает гепа-тотропизмом. После заражения репликация вирусов происходит в кишечнике, а оттуда через портальную вену они проникают в печень и реплицируются в цитоплазме гепатоцитов. Повреждение гепатоцитов возникает не за счет прямого цитотоксического действия, а в результате иммунопатологических механизмов.
Клиника. Инкубационный период составляет от 15 до 50 дней, чаще около месяца. Начало острое, с повышением температуры и явлениями со стороны ЖКТ (тошнота, рвота и др.). Возможно появление желтухи на 5—7-й день. Клиническое течение заболевания, как правило, легкое, без особых осложнений; у детей до 5 лет — обычно бессимптомное. Продолжительность заболевания 2—3 недели. Хронические формы не развиваются.
Иммунитет. После инфекции формируется стойкий пожизненный иммунитет, связанный с IgG. В начале заболевания в крови появляются IgM, которые сохраняются в организме в течение 4—6 месяцев и имеют диагностическое значение. У детей первого года жизни обнаруживаются антитела, полученные от матери через плаценту. Помимо гуморального, развивается и местный иммунитет в кишечнике.
Микробиологическая диагностика. Материалом для исследования служат сыворотка и испражнения. Диагностика основана главным образом на определении в крови IgM с помощью ИФА, РИА и иммунной электронной микроскопии. Этими же методами можно обнаружить вирусный антиген в фекалиях. Вирусологическое исследование не проводят из-за отсутствия методов, доступных для практических лабораторий.
Лечение. Симптоматическое.
Профилактика. Неспецифическая профилактика должна быть направлена на повышение санитарной культуры населения, улучшение водоснабжения и условий приготовления пищи.
Для специфической пассивной профилактики используют иммуноглобулин по эпид-показаниям. Иммунитет сохраняется около 3
месяцев. Для специфической активной профилактики разработана и применяется ина-ктивированная культуральная концентрированная вакцина. Разработана также рекомби-нантная генно-инженерная вакцина.
17.1.2. Реовирусы (семейство Reoviridae)
Реовирусы (семейство Reoviridae ) — семейство безоболочечных вирусов, содержащих лвуните-вую фрагментированную РНК; включает респи раторные и кишечные вирусы, а также некоторые арбовирусы. Название семейства произошло от первых букв англ. слов: respiratory, enteric, orphan viruses. Семейство содержит 4 рода: Orthoreovirus , Orbivirus , Colfivirus , Rotavirus .
Род Orthoreovirus представлен вирусами трех серотипов. Они широко распространены, выделяясь от людей, млекопитающих в норме или при желудочно-кишечных и респираторных инфекциях. Род Orbivirus получил свое название из-за кольцевидной формы капсомеров вирионов (лат. orbis — кольцо). Род Orbivirus включает возбудителей арбовирусной инфекции: вирус Кемерово (переносится клешами, вызывает кемеровскую лихорадку) и вирус синего языка овец (переносится мокрецами). Род Colfivirus включает вирус колорадской клещевой лихорадки, вызывающий арбовирус-ную инфекцию (переносится клещами). Род Rotavirus содержит вирусы, вызывающие распространенные диареи (табл. 17.1).
Структура реовирусов. Вирионы реовирусов имеют сферическую форму (диаметр 70—85нм), двухслойный капсид икосаэдрического типа; оболочки нет (рис. 17.3). Геном представлен двунитевой фрагментированной (10—12 сегментов) линейной РНК. Вирион содержит фермент транскриптазу (РНК-зависимую РНК-полиме-разу). Внутренний капсид и геномная РНК составляют сердцевину вириона. Внутренний капсид реовирусов содержит систему транс-
крипции; белки лямбда-1, лямбда-3, мю-2. От сердцевины отходят шипы, представленные белком лямбда-2. У ротавирусов внутренний капсид включает белки VP-1, VP-2, VP-3, VP-6.
Наружный капсид реовирусов состоит из белков сигма-1, сигма-3, мю-1с, а также белков лямбда-2, отходящих от сердцевины и выступающих в виде шипов. Белок сигма-1 является гемагглютинином и прикрепительным белком. Белок мю-1с определяет способность реовирусов заражать клетки кишечника и впоследствии поражать ЦНС.
У ротавирусов наружный капсид включает белки VP-4 (шипы, выступающие на поверхности вириона, являющиеся гемагглютинином и прикрепительным белком) и VP-7 — основной компонент наружного капсида, являющийся типоспецифическим антигеном. Ротавирусы и ортореовирусы активизируются протеолизом (инфекционные субвирусные частицы) с увеличением их инвазионной способности.
Репродукция. Вирионы реовирусов могут адсорбироваться (с помощью белка сигма-1) на клетке и проникать рецептор-опосредованным эндоцитозом в цитоплазму, где под влиянием ферментов лизосом происходит частичная депротеинизация — разрушение наружного капсида с образованием субвирусных частиц.
Таблица 17.1. Характеристика семейства Reoviridae
Вирусы сферические (70 нм), оболочки нот. Капсид икосаэдричес-кий, двухслойный. РНК двунитевая линейная, из 10- 12 сегментов. Репродукция и сборка — в цитоплазме
Возможно проникновение вирусов в клетку другим механизмом, например инфекционных субвирусных частиц, не содержащих белка сигма-1. Инфекционные субвирусные частицы ротавирусов проникают через клеточную мембрану (механизм проникновения неизвестен) и освобождают сердцевину в цитоплазме, а ферменты сердцевины инициируют продукцию иРНК. С каждого фрагмента геномной РНК считывается индивидуальная и РНК. Транскрипция генома проходит в две фазы (ранняя и поздняя). Минус-нить РНК используется как матрица. Сборка вирионов происходит в цитоплазме. Вирусы выходят при лизисе клетки.
Микробиологическая диагностика. Диагностика арбовирусных инфекций, вызываемых отдельными представителями реовирусов, проводится с помощью вирусологического и серологического методов: заражают культуру клеток или мышей-сосунков (интрацеребрально); с помощью PC К, РПГА, РН выявляют антитела в парных сыворотках крови больного.
Диагностику ротавирусной инфекции см. ниже.
17.1.2.1. Ротавирусы (род Rotavirus)
Ротавирусы человека вызывают острый энтерит новорожденных и детей раннего возраста. Они являются РНК-содержащими вирусами семейства Reoviridaepona Rotavirus . I Свое название получили из-за строения ви-риона (лат. rota — колесо).
Структура ротавирусов. Вирион ротавирусов сферический (диаметр 70 нм), содержит двунитевую фрагментированную (11 сегментов) РНК. Двухслойный капсид (наружный и внутренний) имеет форму колеса с отходящими внутрь «спицами». Вирион имеет 8 белков. Внутренний капсид включает белки VP-1, VP-2, VP-3, VP-6. Наружный капсид включает: 1) белки VP-4 (шипы, выступающие на вирионе, являющиеся гемагглюти-нином и прикрепительным белком); 2) белок VP-7 — основной компонент наружного кап-сида (типоспецифический антиген). Имеются неструктурные белки: NSP1, NSP2, NSP3, NSP4, NSP5, NSP5A. По антигенной структуре различают 6 серогрупп (A-F) и 4 серовара ротавирусов.
Репродукция (рис. 17.4). Вирионы могут проникать рецептор-опосредованным эн-доцитозом в клетку (1), где под влиянием ферментов лизосом происходит частичная депротеинизация — разрушение наружного капсида с образованием субвирусных частиц. Однако это «тупик» для ротавирусов. Другой механизм проникновения заключается в том, что вирионы ротавирусов активируются про-теазами (например, в ЖКТ), превращаясь в инфекционные субвирусные частицы, которые пенетрируют клеточную мембрану (2) и в цитоплазме утрачивают наружный капсид
(под действием лизосом), освобождая сердцевину (3). Ферменты сердцевины инициируют продукцию иРНК, используя в качестве матрицы минус-нить РНК. Белки VP-7 и NS28 синтезируются как гликопротеины и экспрес-сируются в эндоплазматическом ретикулуме (4). Плюс-РНК является иРНК. Она включена внутрь капсидов как матрица для репликации +/- сегментированного генома. Капсиды ротавирусов агрегируют (5), связываются с белком NS28 в эндоплазматическом ретикулуме и приобретают белок VP-7 наружного капсида. Вирусы выходят при лизисе клетки.
Эпидемиология, патогенез и клиника. Источник инфекции — больные или вирусо-носители, выделяющие ротавирусы с калом (фекально-оральный механизм передачи). Пути передачи — водный (основной), пищевой, контактно-бытовой. Инкубационный период 1—3 дня. Ротавирусы распространены повсеместно, вызывают гастроэнтериты, главным образом у детей (часто в возрасте от 6 месяцев до 2 лет); являются причиной смерти около миллиона людей из-за диареи. Размножаются в эпителиоцитах двенадцатиперстной кишки, вызывая их гибель. Заболевание протекает с рвотой, болями в животе и диареей в течение 1 —2 суток. Частота стула 10—15 раз в сутки.
Микробиологическая диагностика. 1) Вирус обнаруживают в фильтрате фекалиий с помощью иммунной электронной микроскопии, ИФА, иммунодиффузионной преципитации в агаре, РСК, РН, РИФ, реакции ко-агглю-тинации, клонированных РНК-зондов. 2) Серологический метод: в сыворотке крови определяют нарастание титра антител с помощью ИФА, РСК, РПГА, РН, РИФ.
Лечение. Симптоматическое.
Профилактика. Основой неспецифической профилактики является соблюдение санитарно-гигиенических правил, санитарных норм водоснабжения и канализации. Специфическая профилактика заключается в применении вакцин; разработана живая вакцина.
17.1.3. Буньявирусы (семейство Bunyaviridae)
Таксономия и классификация. Семейство Bunyaviridae насчитывает более 250 серотипов ви-
русов, входящих в состав пяти родов: Bunyavirus , Phlebovirus , Nairovirus , Hantavirus , Tospovirus . Типовыми вирусами данных родов являются: вирус Буньямвера, вирус москитной лихорадки Сицилия, вирус болезни овец Найроби и вирус Хантаан соответственно. Тосповирусы непатогенны для человека и поражают растения.
Прототипом вирусов данного семейства является впервые выделенный в Центральной Африке и переносимый комарами вирус Буньямвера. Название вируса дано по местности Буньямвера в Уганде.
Морфология. Вирионы имеют овальную или сферическую форму, диаметр 80—120 нм. При электронной микроскопии напоминают пончик. Это сложные РНК-геномные вирусы, содержащие три внутренних нуклеокапсида со спиральным типом симметрии. Каждый нуклеокапсид состоит из нуклеокапсидного белка N, уникальной одноцепочечной минус-РНК и фермента транскриптазы (РНК-зависимой РНК-полимеразы). Три сегмента РНК, связанные с нуклеокапсидом, обозначают по размерам: L (long) — большой, М (medium) — средний и S (short) — малый. РНК не обладает инфекционной активностью. В отличие от других вирусов с минус-РНК геномом (Orthomixoviridae , Paramixoviridae и Rhabdoviridae ), буньявирусы не содержат М-белка, поэтому они более пластичны. Сердцевина вириона, содержащая рибонукле-опротеин (РНП), окружена липопротеидной оболочкой, на поверхности которой находятся шипы — гликопротеины G1 и G2, которые кодируются М-сегментом РНК.
Антигены. Белок N является носителем группоспецифических свойств и выявляется в РСК. Гликопротеины (G1 и G2) — типос-пецифические антигены, выявляемые в РН и РТГА. Это протективные антигены, обуславливающие гемагглютинирующие свойства, которые у буньявирусов не столь выражены, как у ортомиксо- и парамиксовирусов. Они индуцируют образование вируснейтрализу-ющих антител. Гликопротеины — основные детерминанты патогенности, обуславливающие клеточную органотропность вирусов и эффективность их передачи членистоногими.
На основании анализа перекрестного связывания в РСК буньявирусы объединяют в
роды, внутри которых, на основании перекрестной РН и РТГА, они распределяются по серогруппам.
Репродукция буньявирусов. Репродукция бу-ньявирусов происходит в цитоплазме клетки, где сначала формируются РНП. При этом образуется три вида иРНК, каждая из которых кодирует соответствующий полипептид — L, N и предшественники белков G1 и G2. Вирусные белки в инфицированной клетке синтезируются быстро. Так, белок N можно выявить уже через 2 ч, a G1 и G2 — через 4 и 6—8 ч соответственно. Созревание вирусов (приобретение внешней липидсодер-жащей оболочки) в результате почкования РНП, в отличие от других вирусов, происходит не на плазматических мембранах клетки, а при прохождении через стенки везикул в области аппарата Гольджи. В последующем вирусные частицы транспортируются к плаз-молемме (клеточной мембране). Выход вирусных частиц происходит путем экзоцитоза, а иногда— лизиса клетки. Буньявирусы, как и другие представители арбовирусов, обладают способностью размножаться в двух температурных режимах: 36—40 и 22—25 °С, что позволяет им репродуцироваться не только в организме позвоночных, но и в организме переносчиков — кровососущих членистоногих насекомых.
Устойчивость вирусов к действию физических и химических факторов. Буньявирусы чувствительны к действию эфира и детергентов, ина-ктивируются при прогревании при температуре 56 °С в течение 30 мин и почти мгновенно при кипячении, но длительно сохраняют инфекционную активность при замораживании. Буньявирусы стабильны в весьма ограниченном диапазоне значений рН — 6,0—9,0, инактивируются обычно применяемыми дезинфицирующими средствами.
Особенности культивирования буньявирусов и восприимчивость к ним лабораторных жи вотных. К буньявирусам восприимчивы новорожденные белые мыши, белые крысы и хомячки при заражении в головной мозг. Для культивирования вирусов применяют культуры клеток из переносчиков, почки эмбрионов человека, ВНК-21, фибробласты куриного эмбриона, где они не оказывают выраженно-
го ЦПД. Вирусы можно культивировать в куриных эмбрионах. Универсальной моделью для выделения арбовирусов является заражение новорожденных белых мышей, у которых они вызывают развитие энцефалита, заканчивающегося летально.
Эпидемиология, патогенез и клиника. Буньявирусы широко распространены на всех континентах, а вызываемые ими заболевания имеют природную очаговость. Большая часть вирусов данного семейства относится к экологической группе арбовирусов (от англ. ar thropod - borne viruses — вирусы, рожденные или передаваемые членистоногими), так как они передаются кровососущими членистоногими насекомыми. Последние являются не только их переносчиками, но также основным резервуаром и постоянными хозяевами данных вирусов в природных очагах. Большинство буньявирусов передается комарами. Описана вертикальная (трансовариальная) и трансфазовая (от личинки к нимфе и имаго) передача буньявирусов в определенных членистоногих переносчиках. Выделение вирусов в течение зимы и весны из яиц, личинок и нимф комаров показывает, что вирусы зимуют в природе in ovo . Найровирусы большей частью передаются клещами, а флебовирусы — москитами и комарами. Некоторые флебовирусы и буньявирусы могут передаваться мокрецами Culicoides .
Для заболеваний, вызванных данными вирусами, характерна сезонность, обусловленная изменением активности переносчиков. На территории России основное значение имеют клещи. Позвоночными хозяевами данных вирусов являются грызуны, птицы, зайцеобразные, жвачные животные, приматы. Заражение человека может происходить не только трансмиссивно через укусы кровососущих членистоногих насекомых, но и при контакте с больными людьми в результате попадания на поврежденную кожу и слизистые оболочки крови, а также биологических выделений, содержащих вирус.
Вирусы рода Хантаан составляют исключение из правила в данном семействе, так как их основными хозяевами являются грызуны. Вместе с аренавирусами и филовирусами они выделены в экологическую группу нетранс-
миссивных геморрагических лихорадок или робовирусов (от англ. rodent - borne viruses — вирусы, рожденные грызунами). Никаких свидетельств участия в их передаче членистоногих не обнаружено.
Чаще всего вирусы данного семейства вызывают развитие бессимптомной инфекции, которая выявляется при проведении серологических исследований. Большинство из них вызывает лихорадочные заболевания, некоторые геморрагические лихорадки (Крым-Конго и с почечным синдромом — ГЛПС) и энцефа литы (калифорнийский энцефалит).
Наибольшее медицинское значение имеют: вирус калифорнийского энцефалита и входящий в состав комплекса вирусов калифорнийского энцефалита вирус Тягиня (род Bunjavirus ); вирусы москитной лихорадки Сицилия, Неаполь и Рифт-валли. которая имеет большое значение в ветеринарии (рол Phlehovirus ); вирус геморрагической лихорадки Крым-Конго (род Nairovirus ) и вирусы геморрагической лихорадки с почечным синдромом (род Hantavirus). Наиболее пато генны для человека: вирус лихорадки Рифт-валли, Крым-Конго и вирусы ГЛПС.
После перенесенных заболеваний остается стойкий иммунитет.
Микробиологическаядиагностика. Лабораторная диагностика буньявирусных инфекций основана на выделении вирусов и обнаружении антител к ним в парных сыворотках крови. Так как вирусы данного семейства относятся к возбудителям особо опасных инфекций (вторая группа патогенности), выделение их может проводиться лишь в режимных лабораториях. Материалом для исследования служат кровь, взятая в остром периоде заболевания (при москитных лихорадках не позже 24—48 ч от начала заболевания), или кусочки тканей и органов (мозга, печени, селезенки, легких и почек), полученные на аутопсии. Вирус может быть выявлен в организме кровососущих членистоногих переносчиков и во внутренних органах погибших инфицированных животных. Чаще всего буньявирусы выделяют на новорожденных белых мышах, а также на белых крысах и хомяках при интрацеребраль-
ном заражении. Индикация вирусов проводится на основании развития заболевания и гибели животных. Проводят также заражение культур клеток с последующей индикацией в РИФ, так как для буньявирусов не характерно развитие выраженного цитопатогенного действия. Идентификация вирусов проводится в РН на мышах-сосунках, в РСК, РТГА, реакции иммунодиффузии, РИГА, а также с помощью РИФ, ИФА и РИА. Для постановки РИФ и ИФА используют моноклональные антитела, которые получены практически ко всем представителям арбо- и зоонозных вирусов. Из молекулярно-генетических методов диагностики и идентификации применяют: молекулярную гибридизацию нуклеиновых кислот и ПЦР.
Лечение и профилактика. Препараты для специфического лечения не разработаны. В ряде случаев применяют иммунные сыворотки переболевших лиц, рибавирин, интерферон (реаферон). Профилактика основана на защите от комаров, клещей и других кровососущих насекомых. Для создания искусственного активного приобретенного иммунитета применяют убитые вакцины.
17.1.3.1. Вирусы комплекса калифорнийского энцефалита
Вирусы комплекса калифорнийского энцефалита относятся к роду Bunjavirus . Из 12 представителей вирусов комплекса калифорнийского энцефалита 10 вирусов распространено в Америке, один (Тягиня) в Евразии и Африке и один (Инко) в Северной Европе. Из американских представителей комплекса значение в патологии человека установлено для вирусов калифорнийского энцефалита, Ла-Кросс, Джеймстаун-каньон и зайцев беляков.
Вирус калифорнийского энцефалита выделен в 1943 г. в Калифорнии от комаров С. tarsalis, а затем в других штатах, а также в Манитобе (Канада).
Вирусы данного рода вызывают лихорадки (Тягиня, Инко, Гуароа и т.д.) и энцефалиты (энцефалит Джеймстаун-каньон, калифорнийский энцефалит, энцефалит Ла-Кросс и зайцев-беляков). Переносчиком вирусов комплекса калифорнийского энцефалита являются комары (С. tarsalis, A. melanimon, A. dorsalis,
A. vexans, A. nigromaculis, Psorophora signipen-nis, Culiseta inomata и др.), для которых характерна не только трансовариальная, но и венерическая передача. Резервуаром и источником вирусов являются комары и грызуны.
Основная заболеваемость, вызванная вирусами комплекса калифорнийского энцефалита, связана с вирусом Ла-Кросс, эндемичным в 20 штатах США.
Вирус Ла-Кросс. Изолирован от многих видов комаров, а также от слепней Hybomitra lasiophthalma. Однако основным его переносчиком следует считать выплаживающийся в дуплах деревьев A. triseriatus. У комаров установлена не только трансовариальная, но и алиментарная передача (у личинок). Вирус изолирован от кроликов, белок и бурундуков. Функционирование горизонтальной и вертикальной передачи вируса обеспечивает активную циркуляцию вируса, высокую зараженность комаров и стойкость природных очагов в относительно суровых Центральных частях умеренного пояса. Механизм заражения трансмиссивный. Инкубационный период— от 5 до 8—15 дней. Клиническая картина варьирует от общелихорадочного синдрома (в ряде случаев с фарингитом и другими поражениями верхних дыхательных путей) до энцефалита. Летальность 0,05—2 %. После перенесенного заболевания остается напряженный гуморальный иммунитет.
Вирус лихорадки Тягиня. Вызывает заболевания на территории Европейской части России, включая Заполярье, а также в Сибири и на Дальнем Востоке. Он изолирован из 13 видов комаров. Резервуаром и источником вируса в природе являются комары, а также многие виды млекопитающих, лесные грызуны, зайцы-русаки, ежи, кабаны, лисы, косули, возможно белки и ондатры. Из домашних и сельскохозяйственных животных играют роль кролики, свиньи, крупный рогатый скот, собаки, лошади. Механизм заражения трансмиссивный. Основной переносчик— A. vexans. Инкубационный период 2—13 дней. У человека лихорадка Тягиня может протекать как гриппоподобное заболевание, фарингит, бронхопневмония, лихорадка с желудочно-кишечными симптомами и асептическим менингитом. Случаев с летальным исходом и тяжелыми последствиями не отмечено. Перенесенное заболевание оставляет напряженный гуморальный иммунитет. Диагностика основана на изоляции вируса из крови и цереброспинальной
жидкости путем интрацеребрального заражения новорожденных белых мышей, а также заражения культур клеток и обнаружении антител в парных сыворотках с помощью РСК, РТГА, РИГА и РНИФ. Большое значение имеет обнаружение IgM в сыворотке крови или цереброспинальной жидкости к вирусам с помощью ИФА. Препараты для специфического лечения и профилактики не разработаны.
Вирусы, возбудители москитной лихорадки (син. флеботомная лихорадка, лихорадка паппатачи, трехдневная лихорадка, летний грипп).
К возбудителям москитной лихорадки относятся близкие в антигенном отношении вирусы москит ной лихорадки Сицилия (входят в комплекс вирусов москитной лихорадки Сицилия), вирусы москитной лихорадки Неаполь и Тоскана (входят в комплекс москитной лихорадки Неаполь) и другие вирусы данных серологических групп, а также вирусы серогруппы Кандиру и негруппированные вирусы, относящиеся к роду Phlebovirus (более 20 вирусов).
Вирусная этиологияя москитной лихорадки в опытах на волонтерах была установлена Р. Дерр (R. Doerr) совместно с К. Францем и С. Тауссигом (К. Franz, S. Taussig) в 1909 г. Возбудители сицилийской москитной лихорадки и неаполитанской москитной лихорадки были выделены А. Сэйбином (A. Sabin) в 1944 г. из крови больных в период эпидемии среди американских солдат в Италии.
Резервуаром и переносчиком вирусов в природе являются самки москитов Phlebotomus papatasi (от итал. раре — обжираться и tach — молча, т. е. «молчаливый обжора»), у которых доказана трансовариальная передача вирусов потомству. Вирусы экологически связаны с песчанками, которые служат прокормите-лями москитов. Возможно длительное носительство вирусов у крыс и собак. Механизм заражения трансмиссивный, но возможно и парентеральное заражение через плохо обработанные медицинские инструменты. Распространение инфекции соответствует ареалу распространения переносчиков. Вирусы Неаполь и Сицилия выявлены в Европе (Средиземноморье), Азии (Иран и Пакистан) и в Северной Африке; вирус Тоскана обнаружен в Италии и Португалии, т. е. в странах, расположенных в пределах 20—40° с. ш. Периодические вспышки заболевания в первой половине XX в. имели место в Закавказье, Крыму, Молдавии и Средней Азии. Человек высоковосприимчив к данным вирусам (0,001 мл сыворотки крови больного может вызвать заболевание). Инкубационный
период — 3—7 дней. На месте укуса появляется папула. Болезнь начинается остро с озноба, головной боли, боли в глазных яблоках. Характерен симптом Пика — ограниченная инъекция сосудов наружного угла склер в виде треугольника, обращенного вершиной к зрачку, и синдром Тауссига — резкая болезненность при надавливании на глазные яблоки, а также при их движении или при попытке приподнять веки. Лихорадка Тоскана характеризуется развитием асептического менингита. Это самокупирующееся заболевание. Прогноз благоприятный, летальных исходов нет. Перенесенное заболевание оставляет после себя напряженный типоспе-цифический иммунитет к штамму, циркулирующему в данном эндемическом очаге, который формируется в результате многократного инфицирования. Но поскольку он развивается очень медленно, то возможны повторные случаи заболевания, по 2—3 раза в одном и том же сезоне. Микробиологическая диагностика основана на выделении вируса и обнаружении антител в парных сыворотках с помощью РСК, РТГА, РНГА, РНИФ, ИФА. Обнаружение антигена в крови проводят с помощью РСК, дающей положительные результаты в первые часы заболевания. Специфическое лечение и профилактика не разработаны. В отдельных случаях показана специфическая иммунизация населения с помощью инактивированной формолвакци-ны, которая не нашла широкого применения в связи с самокупирующимся инфекционным заболеванием.
17.1.3.2. Вирус лихорадки Рифт-валли
Вирус лихорадки Рифт-валли назван по долине Рифт в Кении, где он был выделен в 1930 г. от больного ягненка во время вспышки заболевания у скота. Вирус Рифт-валли относится к роду Phlebovirus и входит в состав антигенной группы лихорадки долины Рифт. Это один из наиболее патогенных для человека вирусов се мейства Bunyaviridae . Он может длительно (в течение нескольких месяцев) сохранять свою жизнеспособность при 4 "С в среде с добавление сыворотки крови и в течение трех часов выдерживает нагревание до 56 "С. Он также хо рошо сохраняется в высушенном виде и в состо янии аэрозоля. Вирус инактивируется в течение 3 суток под воздействием 0,1% бетапропиолак-тона при рН 9,0 или 0,25% раствора формалина при 4 'С. Быстрая его инактивация наступает под воздействием кислой среды при рН ниже 6,8. Штаммы вирусов Рифт-валли, выделенные в ЮАР и Родезии(1975 и 1978 год), Египте
(1977-1978 гг.), Мавритании (1978 г.) отличаются от других африканских штаммов по своим биологическим и антигенным свойствам, а также повышенной вирулентностью для людей и лабораторных животных. Вирусы хорошо размножаются в большинстве культур клеток, вызывая развитие ЦПД, а также вызывают гибель белых мышей при внутрибрюшинном введении. Он считается одним из немногих вирусных агентов, вызывающих гибель мышей при периферическом заражении.
Резервуаром и источником вируса в природе являются кровососущие насекомые, прежде всего комары рода Culex и Aedes и др., главным образом С. pipiens и С. antennatus, а также про-кормители кровососущих членистоногих насекомых — крупный и мелкий рогатый скот, верблюды, лошади, антилопы, обезьяны, летучие мыши. Комары включаются в биологический цикл вируса благодаря достаточно длительной и высокой вирусемии у больных животных. В результате трансовариальной передачи вирус может длительное время (на протяжении нескольких засушливых лет) сохраняться в яйцах комаров. В период вирусемии человек также может быть источником заражения для комаров, что свидетельствует о потенциальной способности к эпидемическому распространению заболевания. Обычно эпидемии данной лихорадки развиваются вслед за эпизоотиями среди домашних копытных животных (овцы, козы, крупный рогатый скот, верблюды), которые являются источником возбудителя. Основной механизм заражения трансмиссивный. Возможен также контактный механизм заражения при убое и разделке туши больного животного, контакте с инфицированным мясом и внутренними органами животного, когда вирус проникает через поврежденные кожные покровы, а также аэрогенный механизм заражения, например, внутрилабораторное заражение воздушно-пылевым путем при проведении вирусологических исследований. Кровь и ткани внутренних органов больных животных содержат значительные количества вируса; иногда вирус может содержаться в их экскрементах. Во время эпизоотии отмечены многочисленные случаи заражения людей алиментарным путем в результате употребления мяса больных или погибших животных, а также молока больных животных.
В период лактации вирус выделяется с молоком, которое в эндемичных районах должно подвергаться пастеризации.
Чаще болеют сельскохозяйственные рабочие, фермеры, ветеринары и сотрудники ветеринарных и вирусологических лабораторий. До 1977 г. заболевание на Африканском континенте было распространено лишь южнее Сахары и протекало у человека относительно легко. С 1977 г. эпизоотии и эпидемии отмечены на Африканском континенте практически повсеместно. В северных регионах (Египет) заболевание протекает тяжело. Предполагают, что это обусловлено не только генетической предрасположенностью населения и изменением вирулентности вируса, но и особым иммунным фоном у жителей Средиземноморья, имеющих высокую иммунную «прослойку» к вирусам москитной лихорадки. Последние ан-тигенно родственны вирусу лихорадки Рифт-валли, поэтому заболевание у них протекает по типу аутоиммунного процесса.
Помимо Африканского континента, заболевание выявлено в Афганистане и в странах Латинской Америки.
Патогенез заболевания. Характеризуется размножением вируса в месте входных ворот инфекции в регионарных лимфатических узлах и проникновением его в кровь, в результате чего вирус разносится по паренхиматозным органам, где размножается, и снова поступает в кровяное русло, обуславливая развитие вы раженной вторичной вирусемии и вызывая повреждение внутренних органов. Вирус пантро-пен. Штаммы, вызывающие геморрагическую форму заболевания, размножаются в основном в эндотелии сосудов (васкулит) и паренхиматозных органах. Инкубационный период длится от 3 до 7 дней. Выделяют четыре формы забо левания: неосложненная, менингоэнцефали-тическая, геморрагическая и заболевание с поражением органов зрения (ретинит).
Неосложненная форма заболевания начинается остро и характеризуется лихорадкой, головной болью, миалгией, болями в суставах, светобоязнью, рвотой, диареей, явлениями гепатита; длится 2—7 дней. Полное выздоровление наступает через 20—80 суток от начала заболевания.
Наиболее тяжело протекает геморрагическая форма заболевания, которая характеризуется
наличием желтухи и геморрагического синдрома. Большинство больных погибают от острой печеночной недостаточности. Летальность при менингоэнцефалитической форме заболе вания, которая также протекает тяжело, составляет от 5 до 30 %. Восстановление зрения при ретинитах отмечается через 50—70 суток.
Естественная восприимчивость людей высокая. Постинфекционный иммунитет типос-пецифический, нестойкий. Около 20 % переболевших заболевают повторно (2—3 раза).
Микробиологическая диагностика основана на выделении вируса из крови, фекалий и глоточных смывов путем заражения новорожденных белых мышей и культур клеток в первые 2—3 дня заболевания, а также на обнаружении антител к вирусу в парных сыворотках с помощью РСК, РТГА, РИГА, РНИФ и ИФА. С целью обнаружения вируса и его антигенов в исследуемом материале применяют РИФ.
Специфическое лечение не разработано. Для лечения рекомендуется использовать индукторы интерферона, рибавирин, иммунную сыворотку. Выраженным защитным действием обладает гомологичный иммуноглобулин. В опытах на животных показана эффективность гетерогенных иммуноглобулинов. В целом лечение эффективно. Так как заболевание имеет не только медицинское, но и ветеринарное значение, мерами его предупреждения являются проведение карантинных мероприятий и поголовная вакцинация скота убитой и живой вакцинами. Для профилактики заболевания у людей (ветеринаров, животноводов, сотрудников лабораторий, работников скотобоен и солдат, направленных в эндемичные районы по лихорадке Рифт-валли), применяют только уби тую культуральную формолвакцину, созданную в США. Разрабатываются генно-инженерные методы получения безопасных и более эффективных вакцин.
При проведении лабораторных исследований с вирусом следует избегать манипуляций, которые могут привести к образованию аэро золя и случайному попаданию вируса в окру жающую среду.
Молоко в эндемичных регионах должно обязательно подвергаться пастеризации.
17.1.3.3. Вирус геморрагической лихорадки Крым-Конго
Таксономическое положение и биологичес кие свойства вируса. Вирус относится к роду Nairovirus , антигенной группе геморрагической лихорадки Крым-Конго. Название рода происходит от наименования столицы Кении — Найроби, что в переводе означает «студеная вода». Данный вирус обладает биологическими свойствами, характерными для вирусов семейства Bunyaviridae . Это ва-зотропный арбовирус. Большинство штаммов вируса не обладает гемагглютинируюшей активностью.
Эпидемиология, патогенез и клинические проявления заболевания. Заболевания впервые были выявлены в Крыму в 1944 г. военными врачами среди солдат и переселенцев, занятых уборкой сена. В 1945 г. М. П. Чумаков и его ученики из крови больных в острой стадии болезни и от переносчиков инфекции — иксодовых клещей выделили вирус геморрагической лихорадки Крым-Конго. В 1956 г. в Африке при сходном заболевании был выделен вирус Конго, который по биологическим свойствам оказался идентичен вирусу крымской геморрагической лихорадки, поэтому возбудителя болезни называют вирусом геморрагической лихорадки Крым-Конго. Болезнь, вызванная вирусом в Конго, протекает без геморрагического компонента, относительно редко наблюдается у людей, но вирус часто обнаруживают у животных.
Вирус геморрагической лихорадки Крым-Конго относится к арбовирусным природ-но-очаговым заболеваниям. В России это заболевание встречается на территории Краснодарского и Ставропольского краев, Астраханской, Волгоградской и Ростовской областей, республик Дагестан, Калмыкия и Карачаево-Черкесии. Основным резервуаром вируса в природе и источником инфекции являются многие виды пастбищных клещей, передающих вирус своему потомству трансо-вариально и по ходу метаморфоза. Основное значение имеют гиаломовые клещи, способные сохранять вирус до 250 суток и после кормления практически в 100 % случаев инфицировать теплокровных животных. Животные, на которых паразитируют эти клещи (ежи, зайцы, коровы, овцы и козы), служат вре-
менным резервуаром вируса и в период ви-русемии заражают свежие партии клещей. Отличительной особенностью вируса является преобладание заболеваемости животных в виде бессимптомной инфекции, особенно у домашних животных. Человек чаще всего заражается в природных очагах трансмиссивно через укусы клещей и является «тупиком» в эпидемиологической цепи в природных очагах. Возможно заражение через микроповреждения кожи и слизистые оболочки, при контакте с кровью больного или инфицированными предметами. Чаще заболевают медицинские работники (внутрибольничное заражение в 3 % случаев), так как кровь больных в острую фазу заболевания содержит вирус в высоких концентрациях, в связи с чем возможно заражение при проведении медицинских манипуляций (внутривенных вливаний, остановке носового и других кровотечений, проведении искусственного дыхания и т. д.). Большинство заболеваний, переданных контактным путем, протекает тяжело. Это обусловлено наличием эффекта «пинг-понга», т. е. усилением вирулентности вируса после пассажа через живой организм человека. Возможен также аэрогенный механизм заражения при авариях в вирусологических лабораториях.
Проникая в организм человека, вирус в течение инкубационного периода (от 1 до 14 дней) размножается в макрофагах, а затем поступает в кровь. Он обладает вазотропнос-тью, что ведет к развитию генерализованного капилляротоксикоза. Вирус поражает также область гипоталамуса и кору надпочечников, избирательно — слизистую оболочку желудка. Убедительных объяснений такой избирательности не существует. В течение заболевания выделяют несколько периодов: начальный или предгеморрагический период, период раз гара или геморрагических проявлений и пе риод реконвалесценции. В типичном случае заболевание характеризуется острым началом: лихорадкой, выраженной интоксикацией, тяжелыми геморрагическими проявлениями, которые более выражены, чем при омской геморрагической лихорадке. Летальность может достигать 40 %. Смерть наступает от инфек-ционно-токсического шока, массивных кровотечений, печеночно-почечной недостаточ-
ности. Так как у части больных(7-9 %) геморрагические проявления могут отсутствовать, выделяют две клинические формы болезни: с геморрагическими проявлениями и без геморрагических проявлений. Последняя форма протекает, как правило, гораздо легче, чем первая. Период реконвалесценции длительный. Трудоспособность восстанавливается не ранее чем через 1—2 месяца. Различные нарушения в организме после выписки больного из стационара могут сохраняться в течение 1—2 лет и более. Иммунитет напряженный. Комплементсвязывающие и преципитирую-щие антитела у переболевших сохраняются свыше 5 лет. В то же время для геморрагической лихорадки Крым-Конго характерен низкий уровень коллективного иммунитета к данному вирусу. Это обусловлено низкой степенью вовлечения населения в эпидемиологический процесс, низким уровнем циркуляции вируса в природе и сравнительно редким нападением его переносчиков на человека.
Микробиологическая диагностика. Диагностика геморрагической лихорадки Крым-Конго основана на выделении вируса из крови больных и внутренних органов погибших путем заражения новорожденных белых мышей и культур клеток с идентификацией в РИФ, а также на обнаружении антител в парных сыворотках с помощью РНИФ, РСК, РДПА, РИГА, РИА и ИФА, постановки ПЦР Экспресс-диагностика вируса в крови, аутопсийном материале и переносчиках осуществляется с помощью РИГА или РИФ с флюоресцирующей моноклональ-ной мышиной сывороткой к вирусу.
Лечение и профилактика. Для лечения геморрагической лихорадки Крым-Конго применяют реаферон, рибавирин. В первые 3 дня вводят гетерогенный специфический лошадиный иммуноглобулин, а также иммунную сыворотку, плазму или специфический иммуноглобулин, полученные из сыворотки крови реконвалесцентов или привитых лиц. Специфический иммуноглобулин используется для экстренной профилактики у лиц, соприкасающихся с кровью больного. Для создания активного иммунитета у сотрудников лабораторий в целях профилактики используют формолвакцину из мозга зараженных сосунков белых мышей или белых крыс. Для
тех, кто выезжает в Южные регионы России (командировка, отпуск и т.д.), рекомендуют вакцинацию против вируса геморрагической лихорадки Крым-Конго вакциной, производимой в Болгарии. В стационарах должна быть обеспечена профилактика внутриболь-ничного распространения вируса, прежде всего парентерально, поскольку вирус находится в высоких концентрациях в крови человека. Поэтому госпитализация больных проводится обязательно в отдельные боксы. Обслуживание больных должно проводиться специально обученным персоналом.
17.1.3.4. Вирусы ГЛПС и синдрома хантавирусной пневмонии
Таксономическое положение и биологические свойства возбудителей. Возбудители ГЛПС и синдрома хантавирусной пневмонии относятся к вирусам семейства Bunyaviridae рода Hantavirus антигенного комплекса Hantaan. Типовой представитель данного рода — вирус Хантаан (HTVN), выделенный из легочной ткани, а также экскрементов Apodemus agrarius corea корейскими учеными в 1978 г. (Н. W. Lee и соавт.) и названный по р. Хантаан, протекающей по Корейскому полуострову. В отличие от типичных буньявирусов, его частицы характеризуются большей гетерогенностью размеров (90—125 нм), а также наличием во внутренней полости неупорядоченно расположенных гранулярно-филаментозных структур. Вирус хорошо размножается в культурах клеток Vero Е-6, А-549, RLC, 2Вс без выраженного ЦПД. Его удается пассировать на полевых мышах, степных пеструшках, джун-гарских и золотистых хомяках, крысах линии Вистар и Фишер. Животные могут быть заражены различными способами, но самый лучший из них — внутрилегочный способ заражения. Все эти животные являются бессимптомными носителями вируса. У них вирусы обнаружены в легких, буром жире, селезенке, прямой кишке и других органах с помощью ЭМ и РНИФ в виде гранул в цитоплазме клеток. Максимальная концентрация вирусов отмечается на 20-30-й день после заражения. Антитела у животных появляются с 10-го дня после заражения и сохраняются в течение года. Хантавирусы неоднородны в антигенном
отношении. Возбудителями ГЛПС являются 4 из 23 известных в настоящее время серотипов вируса: Хантаан, Пуумала, Сеул и Доброва/ Белград. У других хантавирусов связь с заболеванием человека не установлена, антитела к ним не обнаружены. Название ГЛПС было предложено в 1954 г. М. П. Чумаковым и рекомендовано ВОЗ в 1982 г. для единого обозначения этой нозологической формы, которая была описана под разными названиями (корейская геморрагическая лихорадка, геморрагический нефрозо-нефрит, эпидемическая нефрозопатия, эпидемическая геморрагическая лихорадка или болезнь Сонго).
В 1993 г. произошла вспышка хантавирусной пневмонии (хантавирусного легочного синдрома) в четырех штатах США с высокой летальностью (более 50 %). Заболевание вызывается новыми серотипами вируса — Син Номбре, Нью-Йорк, а также другими серотипами, открытыми позже. Эти легочные заболевания известны также как болезнь «четырех углов», посокольку регистрируются в Калифорнии, Неваде и в регионе границ «квадратных» штатов Аризона, Колорадо, Нью-Мексико и Юта. Отмечена территориальная приуроченность заболеваний к местам обитания оленьих хомячков (грызуны подсемейства Sygmodontinae). Помимо США случаи хантавирусного легочного синдрома зарегистрированы в Центральной и Южной Америке.
Эпидемиология, патогенез и клиника хан- тавирусных инфекций. Хантавирусы широко распространены в природе. По уровню забо леваемости ГЛПС в России занимает ведущее место среди природно-очаговых болезней чело века и регистрируется на 61 из 89 администра тивных территорий. При этом 97 % от общего числа случаев ГЛПС ежегодно регистрируется в европейских и только 3 % — в азиатских регионах России, главным образом на Дальнем Востоке. Наиболее высокие показатели ежегодной заболеваемости ГЛПС отмечаются на территориях Уральского, Поволжского и Волго-Вятского регионов.
Данные вирусы относятся к экологической группе нетрансмиссивных геморрагических лихорадок или робовирусам (от англ. rodent - borne viruses — вирусы, рожденные грызунами). В качестве резервуара и источника инфекции при ГЛПС следует рассматривать мышевид-
ных грызунов лесного комплекса (рыжая полевка, полевая мышь, красно-серая полевка и азиатская мышь), а при легочных поражениях — мышевидных грызунов степного комплекса
(белоногие или оленьи хомячки, хлопковые крысы). У грызунов эта инфекция протекает в виде латентного вирусоносительства. Грызуны выделяют вирус в окружающую среду с калом, мочой и слюной. Основной механизм заражения человека — аэрогенный с воздушно-пылевым путем передачи. Заражение может происходить при вдыхании содержащей биологические выделения грызунов пыли во время уборки и ремонта помещений, при перевозке сена и соломы, работах на ферме, лесоповале, сборе хвороста, ночевке в лесных стогах. Возможен фекально-оральный механизм заражения алиментарным путем при употреблении продуктов, инфицированных выделениями зараженных грызунов, или контактно-бытовым путем через грязные руки во время еды. Возможен также контактный механизм заражения через укус грызуна и при попадании свежих экскрементов зверьков в ссадины на коже, при разделке тушек зверьков. На Дальнем Востоке России случаи ГЛПС, как правило, вызываются серотипом Хантаан, реже — Сеул и протекают тяжелее, чем в очагах в Европейской части России, где ГЛПС в большинстве случаев обусловлена серотипом Пуумала.
Восприимчивость людей к инфицированию высокая. При аспирационном механизме заражения инфицируется большинство лиц, находящихся в зараженном помещении. Инфицированный человек эпидемиологической опасности не представляет.
В основе патогенеза лежит системное деструктивное поражение стенки мелких сосудов, обусловленное вазотропным действием вирусов. Вазопатия, коагулопатия и выделение биологически активных веществ приводят к нарушениям микроциркуляции. Появление очагов ишемии вызывает массивную деструкцию ткани с образованием аутоантигенов. Наиболее выражены данные изменения при ГЛПС в почках, надпочечниках, гипоталамусе, миокарде и кишечнике. При хантавирус- ном легочном синдроме наиболее выраженные изменения отмечаются в легких. Вирусемия длится в пределах 4—7 дней.
Инкубационный период при ГЛПС составляет от 7 до 45 дней, чаще — 2—3 недели. Заболевание начинается остро, с подъема температуры и характеризуется циклической сменой лихорадочной фазы, гипотензивной, олигуричес-кой, диуретической или полиурической фазы и периодом реконвалесценции. Выраженность геморрагического синдрома и уровень смертности в европейских странах ниже, чем в Азиатском регионе, хотя степень повреждения почек одинаковая. ГЛПС не свойственно по-дострое и хроническое течение. Однако у значительной части реконвалесцентов наблюдается резидуальный синдром (постинфекционная астения, неврологические и эндокринные нарушения, почечные проявления в виде хронической тубулоинтерстициальной нефропатии и хронического пиелонефрита). Летальность составляет до 1—2 % в Европейских и до 5— 10 % в Дальневосточных районах России.
Инкубационный период при синдроме ханта-вирусной пневмонии равен 6 неделям. В развитии заболевания выделяют три фазы. После короткой продромальной фазы в виде лихорадки заболевание быстро переходит в фазу сердечно-легочной недостаточности с тяжелыми поражениями легких (пневмония). Летальность достигает 50—60 %. В случае благоприятного исхода наступает период реконвалесценции. Наиболее тяжелые формы хантавирусного легочного синдрома связаны с вирусами Син Номбре и Нью-Йорк, в то время как другие серотипы вирусов вызывают заболевания со смешанным поражением легких и почек.
Иммунитет у переболевших лиц стойкий, пожизненный. Повторные заражения гомологичным серотипом вируса отсутствуют. Протективные антитела у переболевших ГЛПС сохраняются до 25 лет.
Микробиологическая диагностика. Диагностика хантавирусных инфекций основана на выделении вирусов из крови и мочи в острый период заболевания, а также на обнаружении антител в парных сыворотках и в моче больных. У зараженных мышей вирусы, как правило, вызывают бессимптомную инфекцию, поэтому проводят выявление вирусных антигенов в легких и антител в сыворотке крови животных с помощью РИФ, ИФА, а также обнаружение генетического материала с по-
мощью ПЦР. Выделение вирусов в культурах клеток представляет значительные трудности, так как, накапливаясь в значительном количестве, они не вызывают ЦПД. Индикация вируса осуществляется с помощью РНИФ. Флюоресцирующий антиген вирусов имеет вид гранул, локализованных в цитоплазме клеток. Идентификация вирусов проводится с помощью РИФ, РИА, ИФА и РИГА.
Для серологической диагностики заболеваний применяют РНИФ, ИФА, РТНГА, РИГА, РИА.
Для обнаружения генетического материала вирусов в исследуемом материале применяют метод молекулярной гибридизации нуклеиновых кислот и ПЦР. Раннюю диагностику заболевания проводят, обнаруживая антигены вирусов в моче с помощью РИФ и ИФА.
Специфическое лечение и профилактика. Для лечения применяют рибовирин и амиксин. Специфическое лечение и профилактика хантавирусных инфекций не разработаны. Ранее для лечения ГЛПС применяли сыворотку или плазму реконвалесцентов. В настоящее время для лечения и экстренной профилактики против вируса Хантаан разработан специфический иммуноглобулин человека жидкий направленного действия (Хабаровский НИИЭМ, Казанский НИИЭМ). Наиболее перспективным методом профилактики ГЛПС является вакцинация населения эндемичных территорий. Для создания активного иммунитета в целях профилактики за рубежом применяются мозговые, культу-ральные и генно-инженерные убитые вакцины. В России разработана убитая вакцина против ГЛПС на основе штамма К-27 вируса Пуумала, выделенного из крови больного ГЛПС.
Необходимо соблюдать осторожность при работе с исследуемым материалом и кровью больных.
17.1.4. Тогавирусы (семейство Togaviridae)
Название семейства Togaviridae происходит от лат. toga — плащ, накидка, что отражает сложное строение вириона, наличие у вирусов внешней липидсодержащей оболочки (су-перкапсида), окружающей РНП наподобие плаща. Семейство состоит из 4 родов, 2 из которых — род Alphavirus и род Rubivirus — игра-
ют роль в патологии у человека. Альфавирусы относятся к экологической группе арбовиру-сов (от англ. arthropod - borne viruses — вирусы, рожденные или передаваемые членистоногими), вызывающих инфекции, передающиеся членистоногими. Типовым представителем рода является вирус Синдбис (SIN). Род Rubivirus включает вирус краснухи, который передается воздушно-капельным путем и не относится к арбовирусам. Предлагают выделить данный род в отдельное семейство.
Вирусы рода Alphavirus
Морфология, химический состав и особен ности репродукции. Альфавирусы — это слож-ноустроенные, гетерогенные по размерам, ли-пидсодержащие вирусы. Геном их состоит из линейной однонитчатой плюс-РНК, обладающей инфекционной активностью, окруженной капсидом (С-белок) с кубическим типом симметрии и состоящим из 32 капсомеров. Нуклеокапсид окружен наружной двухслойной липопротеидной оболочкой, на поверхности которой располагаются гликопротеи-ны El, Е2 и ЕЗ, пронизывающие липидный слой и контактирующие с нуклеокапсидом. Диаметр вирионов — от 65 до 70 нм.
Размножение вирусов происходит в результате проникновения их в клетку путем репептор-ного эндоцитоза (см. рис. 3.8). Многие альфавирусы приникают в клетку, взаимодействуя с рецептором для Fc-фрагмента Ig. При слиянии вирусной оболочки со стенкой эндосомы вирусная РНК выходит в цитоплазму. Особенностью альфавирусов является образование двух видов информационной РНК — 49S-MPHK, идентичной вирионной, и 26S-mPHK. Синтез структурных белков (С, El, E2, ЕЗ) кодирует 26S-MPHK, трансляция которой начинается на свободных полисомах. Все процессы синтеза вирусоспе-цифических компонентов происходят на рибосомах, связанных с мембранами эндоплазма-тической сети. Здесь же происходит и сборка нуклеокапсидов. Сборка и почкование вирионов путем экзоцитоза происходят на плазматической мембране зараженных клеток в результате воссоединения нуклеокапсида, липидного бислоя и пронизывающих его гликопротеинов. Лиганд-рецепторное взаимодействие белка С с Е2 является сигналом для сборки вириона. Процесс почкования у альфавирусов происхо-
дит очень быстро и протекает быстрее, чем у вирусов семейств Flaviviridae , Orthomyxoviridae , Paramyxoviridae и Rhabdoviridae . Инфекционный цикл занимает 6—8 ч.
В отличие от других вирусов, арбовирусы характеризуются способностью размножаться в двух температурных режимах: 36—40 и 22-25 °С, что позволяет им репродуцироваться не только в организме позвоночных, но и в организме переносчиков — кровососущих членистоногих насекомых.
Устойчивость к действию физических и хими ческих факторов. Наличие липидсодержащей оболочки обуславливает чувствительность данных вирусов к эфиру и детергентам. Они легко разрушаются при 56 °С, устойчивы к рН 6,0—9,0, сохраняют инфекционную активность при замораживании. Вирусы высокочувствительны к ультрафиолетовому облучению, действию формалина и хлорсодержащих дези нфектантов.
Антигенная структура. Альфавирусы не имеют М-белка. Они содержат один капсидный С-белок и два или три гликопротеина супер-капсида: El, E2 и ЕЗ. Последний есть не у всех альфавирусов, он входит в состав супер-капсида вирусов леса Семлики. Е1 и Е2 обладают разной функциональной активностью. Гликопротеин Е1 обладает гемагглютиниру-ющей активностью, агглютинируя эритроциты гусей и цыплят. Он придает способность зараженным клеткам, также как и вирионам, связывать и лизировать эритроциты. Антитела против Е1 блокируют гемагглютинацию, но не нейтрализуют вирусы. Тем не менее, благодаря такому связыванию с антителами, не нейтрализованные вирусы заражают клетки, взаимодействуя с их рецепторами к Fc-фрагментам иммуноглобулинов. Основной протективный антиген Е2 индуцирует синтез антител, нейтрализующих инфекционные свойства вируса.
Поверхностные гликопротеины и белки нуклеокапсида серологически не родственны. Белок С нуклеокапсида обеспечивает родовую специфичность альфавирусов. Гликопротеин Е2 является видоспецифическим антигеном и участвует в PH. E1 ответственен за под-групповую специфичность и выявляется в РТГА. По данным РТГА альфавирусы образуют 4 антигенных комплекса: венесуэльского,
западного и восточного энцефаломиелитов лошадей, комплекс вирусов леса Семлики и негруппированные вирусы.
Особенности культивирования вирусов. Восприимчивость лабораторных животных. Альфавирусы культивируют в культурах клеток фибробластов куриного эмбриона, ВНК-21, СПЭВ и др., где они вызывают развитие выраженного ЦПД. В культурах клеток под агаровым покрытием альфавирусы образуют бляшки. В культурах клеток из переносчиков альфавирусы ЦПД не вызывают. К альфави-русам восприимчивы новорожденные белые мыши (1—3-дневного возраста) при интраце-ребральном, подкожном и внутрибрюшинном заражении, у которых они через 2—5 или 8—12 дней вызывают развитие параличей конечностей с последующим летальным исходом. Вирусы венесуэльского, западного и восточного энцефаломиелитов лошадей патогенны также для взрослых крыс, морских свинок, кроликов и обезьян. Возможно заражение куриных эмбрионов в желточный мешок. Гибель куриных эмбрионов наступает через 2—3 дня.
Универсальной моделью для выделения арбо-вирусов является заражение новорожденных белых мышей, у которых они вызывают развитие энцефалита, заканчивающегося летально.
Эпидемиология, патогенез и клинические про явления заболеваний. Альфавирусы широко распространены в природе, но чаще встречаются в южных широтах. Они вызывают при-родно-очаговые зоонозные инфекции. Почти все альфавирусы экологически связаны с комарами, являющимися не только переносчиками, но также их источником и резервуаром в природе. У переносчиков передача вирусов происходит трансфазово и трансовариально. Личинки комаров легко заражаются многими арбовирусами алиментарным путем. У комаров возможна венерическая передача вируса. В природных очагах резервуаром вирусов являются также позвоночные: птицы, грызуны, приматы и другие прокормители комаров. Основной ме ханизм заражения трансмиссивный. Природные очаги поддерживаются за счет циркуляции вирусов между членистоногими и позвоночными. Человек, попадая в природный очаг заболевания, заражается при укусах инфицированными членистоногими. При высокой плотности насе-
ления и большой численности комаров человек становится источником-накопителем альфави-русов, и они могут передаваться трансмиссивно от человека человеку. Эпидемии заболевания обрываются тогда, когда создается большая «иммунная прослойка» населения в результате перенесенного заболевания и вакцинации.
В лабораторных условиях заражение людей может произойти в результате вдыхания аэрозолей при создании высоких концентраций вирусных частиц, поэтому работа с альфавирусами может проводиться лишь в специальных режимных лабораториях. Это возбудители особо опасных инфекций.
Патогенез альфавирусных инфекций состоит из стадий, характерных для всех арбовирусных заболеваний. Вирусы размножаются в тканях и органах членистоногих, в том числе в слюнных железах. При последующем укусе человека или животного при кровососании они проникают в кровь в результате резорбтивной вирусемии и заносятся во внутренние органы, где размножаются в эндотелии капилляров и клетках РЭС, откуда снова поступают в кровь. Эта вторичная вирусемия сопровождается появлением лихорадки. Вазотропные вирусы поражают эндотелий капилляров внутренних органов, а нейротропные вирусы проникают в ЦНС, где вызывают гибель клеток.
В большинстве случаев заболевания протекают скрытно, бессимптомно и выявляются с помощью серологических методов исследования. У человека альфавирусы могут вызвать заболевания, сопровождающиеся лихорадкой, высыпаниями на коже, развитием энцефалита и артрита.
Основными представителями альфавиру-сов, патогенными для человека, являются вирусы Синдбис, Чикунгунья, О Ньонг-Ньонг; леса Семлики, венесуэльского, западного и восточного энцефаломиелитов лошадей. Вирусы Чикунгунья, О Ньонг-Ньонг и энцефаломиелитов лошадей вызывают эпидемии заболеваний, проявляющиеся энцефалитом или системной лихорадкой.
В результате перенесенных заболеваний появляется стойкий иммунитет.
Комплементсвязывающие антитела сохраняются лишь на протяжении 1—2 лет, и их высокие титры свидетельствуют о недавно перенесенной инфекции. Вируснейтрализующие антитела и антигемагглютинины сохраняются в течение многих лет.
Микробиологическая диагностика заболе ваний. Выделение вирусов из крови и цереброспинальной жидкости проводят путем заражения новорожденных белых мышей ин-трацеребрально, а также заражения культур клеток, где они вызывают развитие ЦПД, а также образование бляшек под агаровым покрытием. Универсальной моделью является заражение новорожденных белых мышей. Идентификацию вирусов проводят в РН на мышах или культурах клеток, в РТГА с эритроцитами гусей, РСК, РИФ и ИФА. Для постановки РИФ и ИФА широко используются моноклональные антитела, полученные почти ко всем арбовирусам.
Серодиагностика основана на обнаружении антител в парных сыворотках с помощью РН, РСК, РТГА, РРГ, РИГА, РНИФ, ИФА и РИА.
Экспресс-диагностика альфавирусных инфекций основана на обнаружении антигенов в исследуемом материале с помощью РИГА, РИФ, ИФА и РИА, а также на использовании молекулярной гибридизации нуклеиновых кислот и/или ПЦР, позволяющих обнаружить участки генома, специфичного для каждого вируса.
Специфическое лечение и профилактика. Из противовирусных препаратов применяют рибавирин, интерферон и реаферон. В ряде случаев для специфического лечения применяют сыворотки реконвалесцентов и гетерогенные иммуноглобулины. Для создания активного искусственного иммунитета в целях профилактики применяют в основном убитые формолвакцины. Вакцинация необходима для персонала, работающего с вирусами. Начиная с 1960-х годов работы по иммунопрофилактике вирусов венесуэльского, западного и восточного энцефаломиелитов лошадей и других экзотических вирусов в России велись под руководством академика РАМН Анатолия Андреевича Воробьева, которому за создание вакцин и разработку методов массовой вакцинации в 1980 г. была присуждена Государственная премия.
17.1.4.1. Вирус лихорадки Синдбис
Вирус лихорадки Синдбис является типовым вирусом рода Alphavirus и входит в состав антигенного комплекса вирусов западного энцефаломиелита лошадей. Впервые он выделен в 1952 г. из комаров Culex pipiens, Culex inivittatus в деревне Синдбис в окрестностях Каира (Египет). Вирус обладает всеми биологическими свойствами, характерными для альфавирусов. В клетках позвоночных и беспозвоночных воспроизведена бессимптомная инфекция. Ее механизмом является переход в состояние ДНК-провируса и интеграция в геном клетки хозяина. В геноме хронически инфицированных вирусом Синдбис клеток обнаружено 10—20 копий вирусных ДНК. Переносчиком вируса являются комары. Природными хозяевами его среди позвоночных животных являются птицы, у которых заболевание протекает бессимптомно. Вирус вызывает спорадические заболевания и небольшие вспышки, встречающиеся в Африке, Южной Америке, Индии, Австралии.
Близкий в антигенном отношении к вирусу лихорадки Синдбис является вирус карельской лихорадки (финское название — лихорадка Погоста, в Швеции — болезнь Окельбо), обнаруженный у больных на территории Карелии в 1981г. Данный вирус также относится к вирусам комплекса западного энцефаломиелита лошадей. Переносчиком его являются комары рода Aedes.
Заболевания проявляются лихорадкой, головной болью, артралгиями, сыпью на коже и длятся 5—8 дней. Исход их благоприятный, но возможен переход в хроническое течение с развитием артрозов и потерей трудоспособности. Лабораторная диагностика основана на выделении вирусов из крови и серологических методах исследования. Специфическое лечение и профилактика не разработана.
17.1.4.2. Вирус лихорадки леса Семлики
Название вируса лихорадки леса Семлики про
исходит от местности округа Бвамба в Уганде, леса
Семлики, где в 1942 г. был выделен вирус из кома
ров A. abnormalis. В последующем он был выделен
от комаров в Кении и Камеруне (Африка), а также
в Приморском крае России и в Казахстане. Следует
отметить несколько повышенную термоустойчивость вируса. При 60 °С полная инактивация наступает не менее чем через 30—60 мин. В присутствии солей двух- и трехвалентных катионов термоустойчивость повышается. По строению и биологическим свойствам вирус близок к вирусу Синдбис. Внешняя оболочка его содержит три антигена: E1, E2 и ЕЗ. Данный вирус является типовым представителем антигенного комплекса леса Семлики, в состав которого входят вирусы Чикунгунья, О Ньонг-Ньонг, Росс-Ривер (р. Росс) и вирус Майяро. Резервуаром и источником вируса в природе являются комары и птицы. Механизм заражения трансмиссивный. Заболевания у людей носят спорадический характер и проявляются лихорадкой, денгеподобным синдромом, в ряде случаев — развитием энцефалита и асептического менингита. Микробиологическая диагностика основана на выделении вируса из крови и обнаружении антител в парных сыворотках. Препараты для специфического лечения и профилактики не разработаны.
17.1.4.3. Вирус лихорадок Чикунгунья и О Ньонг-Ньонг
Вирусы относятся к антигенному комплексу Семлики. Переносчиками их являются комары родов Aedes и Anopheles (Aedes aegypti, Aedes africanus и Anopheles funestus). Резервуаром и источником возбудителя для вируса Чикунгунья являются птицы, летучие мыши, обезьяны, которые поддерживают циркуляцию вирусов в природе (джунглевый тип ли хорадки), и человек (городской тип лихорадки). Для вирусов О Ньонг-Ньонг резервуаром и источником возбудителя являются человек и приматы. Заболевания распространены в странах с тропическим и субтропическим климатом. Вирус лихорадки Чикунгунья распространен в Африке (Танзания, Зимбабве, ЮАР, Мозамбик, Уганда), Юго-Восточной Азии (Индия, Таиланд, Филиппины, Индонезия). Азиатские штаммы вируса мало чем отличаются от африканских штаммов вируса. Вирус лихорадки О Ньонг-Ньонг вызывает эпидемии в Юго-Западной, Центральной и Юго-Восточной Африке.
Городские эпидемии лихорадок происходят по цепочке человек-комар-человек. Лихорадка Чикунгунья («та, которая сгибает») часто накладывается на окончание эпидемии лихорадки денге. Уровень вирусемии у больных высок. Очевидно, комары могут переносить вирус и чисто механически при прерывистости кровососания, что обуславливает одновременное заражение лиц, проживающих в одном помещении.
Вирусы вызывают денгеподобные заболевания, характеризующиеся нередко двухволновой лихорадкой, интоксикацией, миалгиями, сильными болями в суста вах, лимфаденопатией, зудящей макуло-папулезной сыпью, иногда — менингеальными и геморрагическими явлениями. В том случае, если не развивается геморрагический или шоковый синдром, возникающий в результате повторного инфицирования вирусами, больные выздоравливают. Лабораторная диагностика основана на вирусологическом и серологическом методах исследования. Препараты для специфического лечения и профилактики не разработаны. Живая вакцина из вируса лихорадки Чикунгунья, прошедшего несколько интрацеребральных пассажей через мышей, вызывает непродолжительный иммунитет и практического значения не имеет. Потребность в вакцинах фактически отсутствует, так как эпидемии нерегулярны, а исход заболеваний благоприятный.
Арбовирусные инфекции, сопровождающиеся лихорадкой, поражением суставов и сыпью (денгепо-добный синдром), вызываются также вирусом Росс-Ривер в Австралии, на о. Фиджи, Самоа, островах Кука и Новой Гвинеи и вирусом Майяро в Южной и Центральной Америке, входящими в состав вирусов антигенного комплекса Семлики.
17.1.4.4. Вирусы энцефаломиелитов лошадей
Вирус венесуэльского энцефаломиелита лошадей впервые выделен в 1938 г. из мозга лошади, павшей во время эпизоотии в Венесуэле. Имеет несколько вариантов (6 подтипов) от 1А до 1F. Для людей наиболее опасен подтип 1АВ. Вирус вызывает заболевания в северной части Южной Америки, Центральной Америке, Флориде и Мексике. Эпидемические штаммы появляются только во время крупных эпизоотии и эпидемий. Резервуаром и источником вируса в природе являются птицы, грызуны, сумчатые, обезьяны либо домашние животные, лошади, мулы, ослы, коровы и овцы, а также человек, у ко торого, как и у больных лошадей, выражений вирусемия. В ряде случаев вирус был выделен из смывов ротоглотки, что указывает на возможность передачи вируса от человека человеку. Механизм заражения трансмиссивный, переносчики — комары родов Aedes, Culex, Mansonia, Psorophora, Haemogogus, Anopheles, Sabethes. У больных лошадей вирус выделя-
ется с молоком, мочой, носовым секретом, может проникать в ротовую полость человека с загрязненных рук. Известны случаи внут-рилабораторного аспирационного заражения воздушно-пылевым путем в результате вдыхания вирусных аэрозолей.
Инкубационный период — от 2 до 6 дней. У человека заболевание протекает чаще всего как ОРВИ с лихорадкой и головной болью, мышечными болями. Энцефалитическая форма возникает редко (3—5 %) и,главным образом, у детей. Летальность среди взрослых составляет 6-9 %, среди детей до 5 лет — 35 %.
Иммунитет после перенесенного заболевания стойкий, напряженный.
Микробиологическая диагностика основана на выделении вируса из крови больных и цереброспинальной жидкости, а также на обнаружении антител в парных сыворотках.
Для специфического лечения и экстренной профилактики применяют иммуноглобулин против вируса венесуэльского энцефаломиелита лошадей жидкий, полученный из сыворотки крови лошадей. Из противовирусных препаратов используют интерферон, реафе-рон. Для создания активного иммунитета в целях профилактики применяют вакцину вируса культуральную очищенную концентрированную инактивированную сорбированную жидкую. Она приготовлена из аттенуирован-ного культурального штамма вируса СМ-27 венесуэльского энцефаломиелита лошадей, имеющего все шесть иммуногенно активных эпитопов Е2, инактивированного формалином и прогреванием. Вакцина предназначена для профилактики заболевания у лиц 16 лет и старше в группах повышенного риска, а именно: населения эндемичных районов, лиц, выезжающих в эндемичные районы, сотрудников вирусологических лабораторий. Так как убитая вакцина не всегда создает иммунитет к заражению через дыхательные пути, для вакцинопрофилактики у сотрудников вирусологических лабораторий предпочтительно применять живую таблетированную вакцину для перорального применения, разработанную А. А. Воробьевым и соавт. из штамма 230. Ведутся работы по получению синтетических полипептидов, имитирующих иммуногенные эпитопы Е2.
Дата: 2019-02-19, просмотров: 271.