Назначение и свойства конкретных и известных математических моделей (по выбору)
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Математическая модель — приближенное описание объекта моделирования, выраженное с помощью математической символики.

Г ипотеза[править | править код]

Модели первого типа — гипотезы («такое могло бы быть»), «представляют собой пробное описание явления, причем автор либо верит в его возможность, либо считает даже его истинным». По Пайерлсу это, например, модель Солнечной системы по Птолемею и модель Коперника (усовершенствованная Кеплером), модель атома Резерфорда и модель Большого Взрыва.

 

Модели-гипотезы в науке не могут быть доказаны раз и навсегда, можно лишь говорить об их опровержении или неопровержении в результате эксперимента[18].

 

Если модель первого типа построена, то это означает, что она временно признаётся за истину и можно сконцентрироваться на других проблемах. Однако это не может быть точкой в исследованиях, но только вре́менной паузой: статус модели первого типа может быть только вре́менным.

 

Феноменологическая модель[править | править код]

Второй тип — феноменологическая модель («ведем себя так, как если бы…»), содержит механизм для описания явления, хотя этот механизм недостаточно убедителен, не может быть достаточно подтверждён имеющимися данными или плохо согласуется с имеющимися теориями и накопленным знанием об объекте. Поэтому феноменологические модели имеют статус вре́менных решений. Считается, что ответ всё ещё неизвестен, и необходимо продолжить поиск «истинных механизмов». Ко второму типу Пайерлс относит, например, модели теплорода и кварковую модель элементарных частиц.

 

Роль модели в исследовании может меняться со временем, может случиться так, что новые данные и теории подтвердят феноменологические модели и те будут повышены до статуса гипотезы. Аналогично новое знание может постепенно прийти в противоречие с моделями-гипотезами первого типа, и те могут быть переведены во второй. Так, кварковая модель постепенно переходит в разряд гипотез; атомизм в физике возник как временное решение, но с ходом истории перешёл в первый тип. А вот модели эфира проделали путь от типа 1 к типу 2, а сейчас находятся вне науки.

 

Идея упрощения очень популярна при построении моделей. Но упрощение бывает разным. Пайерлс выделяет три типа упрощений в моделировании.

 

Приближение[править | править код]

Третий тип моделей — приближения («что-то считаем очень большим или очень малым»). Если можно построить уравнения, описывающие исследуемую систему, то это не значит, что их можно решить даже с помощью компьютера. Общепринятый приём в этом случае — использование приближений (моделей типа 3). Среди них модели линейного отклика. Уравнения заменяются линейными. Стандартный пример — закон Ома.

 

Если мы используем модель идеального газа для описания достаточно разреженных газов, то это — модель типа 3 (приближение). При более высоких плотностях газа тоже полезно представлять себе более простую ситуацию с идеальным газом для качественного понимания и оценок, но тогда это уже тип 4.

 

Упрощение[править | править код]

Четвёртый тип — упрощение («опустим для ясности некоторые детали»), в такой отбрасываются детали, которые могут заметно и не всегда контролируемо повлиять на результат. Одни и те же уравнения могут служить моделью типа 3 (приближение) или 4 (опустим для ясности некоторые детали) — это зависит от явления, для изучения которого используется модель. Так, если модели линейного отклика применяются при отсутствии более сложных моделей (то есть не производится линеаризация нелинейных уравнений, а просто ищутся линейные уравнения, описывающие объект), то это уже феноменологические линейные модели, и относятся они к следующему типу 4 (все нелинейные детали «для ясности» опускаем).

 

Примеры: применение модели идеального газа к неидеальному, уравнение состояния Ван-дер-Ваальса, большинство моделей физики твердого тела, жидкостей и ядерной физики. Путь от микроописания к свойствам тел (или сред), состоящих из большого числа частиц, очень длинен. Приходится отбрасывать многие детали. Это приводит к моделям четвёртого типа.

 

Эвристическая модель[править | править код]

Пятый тип — эвристическая модель («количественного подтверждения нет, но модель способствует более глубокому проникновению в суть дела»), такая модель сохраняет лишь качественное подобие реальности и даёт предсказания только «по порядку величины». Типичный пример — приближение средней длины свободного пробега в кинетической теории. Оно даёт простые формулы для коэффициентов вязкости, диффузии, теплопроводности, согласующиеся с реальностью по порядку величины.

 

Но при построении новой физики далеко не сразу получается модель, дающая хотя бы качественное описание объекта — модель пятого типа. В этом случае часто используют модель по аналогии, отражающую действительность хоть в какой-нибудь черте.

 

Аналогия[править | править код]

Тип шестой — модель-аналогия («учтём только некоторые особенности»). Пайерлс приводит историю использования аналогий в первой статье Гейзенберга о природе ядерных сил[19].

 

Мысленный эксперимент[править | править код]

Седьмой тип моделей — мысленный эксперимент («главное состоит в опровержении возможности»). Такой тип моделирования часто использовался Эйнштейном, в частности, один из таких экспериментов привёл к построению специальной теории относительности. Предположим, что в классической физике мы движемся за световой волной со скоростью света. Мы будем наблюдать периодически меняющееся в пространстве и постоянное во времени электромагнитное поле. Согласно уравнениям Максвелла, этого быть не может. Отсюда Эйнштейн заключил: либо законы природы меняются при смене системы отсчёта, либо скорость света не зависит от системы отсчёта, и выбрал второй вариант.

 

Демонстрация возможности[править | править код]

Восьмой тип — демонстрация возможности («главное — показать внутреннюю непротиворечивость возможности»), такого рода модели тоже мысленные эксперименты с воображаемыми сущностями, демонстрирующие, что предполагаемое явление согласуется с базовыми принципами и внутренне непротиворечиво. В этом основное отличие от моделей типа 7, которые вскрывают скрытые противоречия.

 

Один из самых знаменитых таких экспериментов — геометрия Лобачевского. (Лобачевский называл её «воображаемой геометрией».) Другой пример — массовое производство формально—кинетических моделей химических и биологических колебаний, автоволн. Парадокс Эйнштейна — Подольского — Розена был задуман как мысленный эксперимент для демонстрации противоречивости квантовой механики, но незапланированным образом со временем превратился в модель 8 типа — демонстрацию возможности квантовой телепортации информации.

 

В основе содержательной классификации — этапы, предшествующие математическому анализу и вычислениям. Восемь типов моделей по Пайерлсу суть восемь типов исследовательских позиций при моделировании

Құрылымдық сұраныс тілі SQL

Дата: 2019-02-02, просмотров: 269.