Будем считать, что измеряемая с. в. имеет неизвестные параметры, которые нам нужно оценить. Например, мы можем знать, что с.в. X~N(a,s2), но параметры aи σ нам неизвестны.
Для того чтобы интуитивно понять смысл дальнейших вычислений, вернемся к набору чисел , который является реализацией выборки на одном элементарном исходе. Ввиду предположений о том, как проводятся наши измерения, можем сделать вывод, что числа появляются равновероятно. Таким образом, можно записать следующий закон распределения:
x 1 | x 2 | ... | xn | |
1/ n | 1/ n | ... | 1/ n |
Заметим, что если мы позволим элементарному исходу меняться, то всеперечисленные ниже характеристики станут величинами случайными, поскольку каждая из них будет функцией от n случайных величинX1, X2, …, Xn .
Определение 13. Выборочным средним (средним арифметическим) наблюдаемых значений с. в. называется число, определяемое формулой:
(5) |
Если наблюдаемые данные представлены в виде вариационного ряда, где - варианты значений с.в. , а - соответствующие им частоты, то выборочное среднее вычисляется по формуле
(6) |
Определение 14. Выборочной дисперсией значений с.в. называется среднее арифметическое квадратов отклонений наблюдаемых значений этой величины от их выборочного среднего:
(7) |
Аналогично для вариационного ряда выборочная дисперсия определяется формулой:
(8) |
Интуиция нам подсказывает, что числа и должны быть приближениями математического ожидания и дисперсии с.в. . Оказывается, что первая формула ─ это хорошее приближение математического ожидания с.в. , а вторая формула ─ не очень хорошее приближение дисперсии с.в. . Поэтому вводится следующая исправленная дисперсия:
(9) |
Данное выражение будет давать хорошее приближение дисперсии с.в. .
Определение 15. Выборочным средним квадратическим отклонением называется арифметический квадратный корень из выборочной дисперсии:
(10) |
Определение 16. Пусть закон распределения с.в. содержит неизвестный параметр θ. Оценкой параметра θ называется некоторая функция отс.в. .
Определение 17. Оценка называется несмещенной, если .
Определение 18.Оценка называется состоятельной, если для всякого выполняется .
В теории вероятности в этом случае говорят, что (по вероятности).
Определение 19. Оценка называется эффективной, если для любой другой оценки параметра θ выполняется соотношение .
Несмещенность оценки означает, что прибор, которым мы производили измерения, либо способ измерения не содержит системной ошибки. В среднем мы получаем измеряемый параметр θ. Состоятельность ошибки говорит о том, что при увеличении числа измерений наша оценка приближается к измеряемому параметру θ. А эффективность означает, что данная оценка имеет наименьший разброс значений.
Теорема 1.Пусть с.в. X~N(a,s2) обладает конечной дисперсией: . Оценка , где – выборочное среднее, является несмещенной и состоятельной оценкой параметра q=a.
□
Теорема 2. Справедливы следующие утверждения:
1) Оценка параметра q=s2, где , является несмещенной оценкой.
2) Если существует математическое ожидание от то данная оценка состоятельна.
Лемма 1.Пусть , где C— const, . Тогда .
Лемма 2 .Если , то существует такое число , что .
□
Пример 4. Найти несмещенную оценку дисперсии с.в. на основании данного распределения выборки:
2 | 7 | 9 | 10 | |
8 | 14 | 10 | 18 |
Решение.
Находим выборочную среднюю .
Для вычисления выборочной дисперсии воспользуемся формулой: .
, . Находим несмещенную оценку дисперсии («исправленную» выборочную дисперсию): . □
Пример 5. Монету подбрасывают раз. Вероятность выпадения герба при каждом подбрасывании равна . В ходе опыта монета выпала гербом раз. Показать несмещенность оценки вероятности выпадения герба в каждом опыте.
Решение. Число успехов имеет биномиальное распределение.
Тогда , . Следовательно, , что доказывает несмещенность оценки . □
Упражнение.Исследовать на несмещённость и состоятельность следующую оценки дисперсии:
где – теоретическое значение математического ожидания.
Математическое ожидание и дисперсия являются частными случаями более общих понятий – моментов случайной величины.
Определение 20 . Начальным моментом порядка с.в. Х называется математическое ожидание - й степени этой величины:
. | (11) |
При получаем математическое ожидание с.в. Х.
Определение 21 . Центральным моментом порядка с.в. Х называется математическое ожидание величины , т. е. .
При получаем дисперсию с. в. Х.
Теорема 3 . (Связь между центральными и начальными моментами.) Для всех справедлива формула .
Доказательство опускается.
Определение 22 . Коэффициентом асимметрии с.в. Х называется число . (12)
Коэффициент Sk(X) характеризует асимметрию распределения относительно математического ожидания.
Если плотность распределения с.в. симметрична, то коэффициент асимметрии Sk(X)=0. На рисунке выше приведены графики функций плотности в двух случаях: Sk(X)>0, Sk(X)<0. Если распределение с.в. симметрично, как, например, в случае нормального распределения, то медиана совпадает с математическим ожиданием. Однако для несимметричных распределений математическое ожидание и медиана, вообще говоря, не совпадают.
Определение 23 . Коэффициентом эксцесса с.в. Х называется число
. (13)
Данный коэффициент изучает отклонение от нормальной плотности по части островершинности. При этом “ ” добавлено для того, чтобы для нормального закона распределения . Положительный эксцесс обычно указывает на то, что рассматриваемое распределение имеет более высокую и более острую вершину, чем у соответствующей нормальной кривой, а отрицательный – более низкую и плоскую.
(нормальное распределение)
Лекция 3
Дата: 2019-02-02, просмотров: 417.