Пассивные сглаживающие фильтры
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Их сглаживающее действие основано на накоплении энергии в реактивных элементах от сети в моменты её максимума и передачи в нагрузку в моменты её минимума. Основные схемы пассивных фильтров приведены на рис.3.25.

 

Рисунок 3.25 – Схемы пассивных сглаживающих фильтров

В резонансных фильтрах контур Lк Cк настраивается на частоту той гармоники, которую следует подавить. Обычно это первая гармоника. В компенсированном фильтре дроссель кроме основной обмотки имеет ещё небольшую компенсационную обмотку Wк. Переменные составляющие напряжения, обусловленные током i ~ на индуктивности и ёмкости противофазны и, в выходном напряжении, компенсируют друг друга. Это позволяет снизить пульсации в 3…5 раз, но требуется настройка и не должно быть перекомпенсации. Фильтр хорошо работает при неизменной нагрузке. В системах

с высокочастотными составляющими пульсаций применяют многозвенные фильтры (рис. 3.26). Каждое звено имеет свою полосу пропускания: по частоте сети, по частоте  преобразования и помехам.

                           

Рисунок 3.26 – Многозвенный фильтр для импульсных выпрямителей

 

Здесь С1- электролитический конденсатор большой ёмкости, С2 - плёночный, С3 - керамический конденсатор; 1 и 2 кабельные индуктивности – ферритовые кольца, нанизанные на проводники ( они не имеют межвитковой ёмкости и не пропускают крутые фронты импульсных помех).

Сглаживающий фильтр характеризуется коэффициентом сглаживания пульсаций, под которым понимают отношение коэффициента пульсаций на входе к коэффициенту пульсаций на выходе фильтра [3]: 

                                                                  (3.23)

Отношение постоянной составляющей на выходе к постоянной составляющей на входе называют КПД фильтра, тогда                                                        

                                  ,                                                (3.24)

     где  – КПД фильтра.

В общем случае,  сглаживающий фильтр является частотно зависимым делителем  напряжения Z1 и Z2, как показано на рис.3.26.

Рисунок 3.27 – Схема замещения фильтра для первой гармоники

 

Наибольшие трудности для сглаживания представляет именно первая гармоника пульсаций. Для неё получим: , где . Отсюда находим                                          

                                                                                     (3.25)

Подставив (3.25) в (3.24), нетрудно получить

                                                                                        (3.26)

Выражение (3.26) справедливо для пассивных ФНЧ и показывает, что чем больше Z1 и меньше Z2 , тем выше коэффициент сглаживания.

 

L – фильтр. Возьмём простейший индуктивный фильтр и найдём модуль его коэффициента сглаживания. Очевидно, что

                                       ,                                           (3.27)

где под КПД понимается отношение , а величина rL– омическое сопротивление дросселя. Зависимость q  от тока нагрузки показана на рис.3.28.

Рисунок 3.28 – Зависимость коэффициента сглаживания от тока нагрузки

для L – фильтра

 

С уменьшением тока (RН возрастает) КПД стремится к 1. При увеличении тока (RН уменьшается) q  согласно выражению (3.27) растёт. Очевидно, что дроссель должен быть линейным ( индуктивность не зависит от тока нагрузки) для чего требуется немагнитный зазор в магнитопроводе. Величина индуктивности  дросселя такова, что дроссель полностью не разряжается за период пульсаций, то есть ток дросселя не спадает до нуля.

Значит, индуктивность должна быть больше некоторой критической величины . Таким условием является следующее неравенство

                                         ,                                       (3.28)

где   ;  ; ;

После подстановки получим

                                                                    (3.29)

Рассчитывая на худший случай,  в формулу следует подставлять минимальный ток нагрузки и если , то . Поэтому индуктивные фильтры целесообразны при больших токах нагрузки.

LC -фильтр (Г-образный). Здесь КПД  определяется, как и в предыдущей схеме, а сопротивление                                                   (3.30)

Поскольку сопротивление конденсатора первой гармонике тока много меньше сопротивления нагрузки ,  то .

     Тогда             .             (3.31)

Здесь важным является  – отсутствие резонансных явлений на частотах близких к частоте первой гармоники пульсаций, а входное сопротивление фильтра должно иметь индуктивный характер. Обычно это выполняется при q >3 и собственной частоте фильтра 

                                                                                (3.32)

При протекании тока  I0  через сглаживающие фильтры с индуктивностями, в последних накапливается энергия

                                                                                        (3.33)

При коммутации или обрыве нагрузки эта энергия освобождается – возникает ЭДС самоиндукции, которая поддерживает падающий ток

                                                                                          (3.34)

Величина этой ЭДС может превышать номинальное напряжение выпрямителя на десятки и сотни процентов. Перенапряжение зависит от перепада тока ( ) и волнового сопротивления фильтра

                                                                                     (3.35)

 Характер переходного процесса может быть колебательным или апериодическим. Вышесказанное иллюстрируется эпюрами рис.3.29.

 

Рисунок 3.29 – Напряжение на выходе фильтра при изменении

сопротивления нагрузки

                           

С – фильтр. Возьмём простейший ёмкостный фильтр и найдём его коэффициент сглаживания. Здесь напряжения  на входе и выходе одинаковы, поэтому следует говорить о модуле коэффициента передачи переменной составляющей тока от источника в нагрузку. Эквивалентная схема показана на рис. 3.30.

 

Рисунок 3.30 – Эквивалентная схема для ёмкостного фильтра

 

На этом рисунке  – переменные составляющие тока. Передача постоянной составляющей тока  I0 (и напряжения) выполняется с , так как потерь по постоянному току в фильтре нет. Коэффициент сглаживания фильтра равен:                                                        (3.36)

Поскольку                                         (3.37)

                                                                                                  (3.38)

Подстановка (3.37) и (3.38) в (3.36) даёт

                .         (3.39)

Очевидно, что с увеличением тока нагрузки (уменьшением RH) коэффициент сглаживания уменьшается. Поэтому ёмкостные фильтры целесообразны при малых токах и высокоомных нагрузках.

 

Для получения больших коэффициентов сглаживания используют каскадное включение фильтров, как показано на рис.3.31

 

 

Рисунок 3.31 – Каскадное включение фильтров

 

Общий коэффициент сглаживания равен

                                                                                                    (3.40)

Выразим его через коэффициенты сглаживания отдельных каскадов, учитывая, что

                                                                    (3.41)

Подстановка (3.41) в (3.40) даёт

                                            .                                           (3.42)

Видно, что при каскадном соединении коэффициенты сглаживания отдельных звеньев перемножаются, результирующая масса и объём становятся меньше, чем у однозвенного фильтра. Однако возрастает количество собственных резонансных частот, что ухудшает устойчивость всей системы. По этой причине количество звеньев в реальных схемах не превышает 2 (редко 3).

Дата: 2018-12-21, просмотров: 301.