Пусть твердое тело под действием внешних сил вращается вокруг оси Oz с угловой скоростью ω (рис. 17.3).
Рассматривая твердое тело как механическую систему, разобьем ее на множество материальных точек с массами Δmk. Каждая точка движется по окружности радиуса rk с касательным ускорением atk = ε r k и нормальным ускорением ank = ω2 r k , где ε — угловое ускорение.
Используем для каждой точки принцип Даламбера и приложим силы инерции:
Система сил, действующих на точку, по принципу Даламбера, находится в равновесии.
Поэтому алгебраическая сумма моментов относительно оси вращения должна быть равна нулю:
момент внешних сил.
Моменты нормальных сил инерции F"инk равны нулю, т. к. силы пересекают ось z . Силы, направленные по касательной к окружности, равны
Тема 1.15. Общие теоремы динамики 125
где ε — общая величина, угловое ускорение тела.
Подставив значение силы в формулу для определения моментов, получим
них сил относительно оси; ε — угловое ускорение тела.
Момент инерции тела в этом выражении определяет меру инертности тела при вращении.
По выражению для момента инерции можно определить, что единица измерения этой величины в системе СИ [J z] = [mr2] =кг∙м2.
Видно, что значение момента инерции зависит от распределения массы относительно оси вращения: при одинаковой массе момент инерции больше, если основная часть массы расположена дальше от оси вращения. Для увеличения момента инерции используют колеса со спицами и отверстиями.
Моменты инерции некоторых тел
126 Лекция 17
Примеры решения задач
Пример 1. Автомобиль двигался со скоростью 54 км/ч. В результате резкого торможения автомобиль остановился. Определите время торможения, если коэффициент трения между поверхностью дороги и колесами автомобиля 0,36.
Решение
Принимаем автомобиль за материальную точку (рис. 17.8).
1. Считаем, что торможение произошло только за счет трения.
Используем теорему об изменении количества движения. Начальная скорость
54∙1000
vo = ——— = 15 м/с. По теореме изменения количества движения mv — mvo = FTt .
3600
Конечная скорость v = 0 (остановка).
2. Тормозная сила FT = — fR .
R = G = т q ,
здесь R — сила прижатия; f— коэффициент трения; G — сила тяжести; т — масса автомобиля; q — ускорение свободного падения; q = 9,81м/с2.
Тема 1.15. Общие теоремы динамики 127
3. После подстановок получаем формулу для определения времени торможения.
Пример 2. После отключения двигателя колесо радиусом 0,5 м и массой 700 кг имело угловую частоту вращения 300 об/мин. Определите момент трения в подшипниках, если вал колеса остановился через 1,5 мин. Вращение принять равнопеременным, колесо считать сплошным цилиндром (рис. 17.9).
Решение
1. Запишем уравнение динамики при вращении:
где M∑ — суммарный момент внешних сил; J — момент инерции; ε — угловое ускорение; Мдв — движущий момент; Мтр — момент трения (сил сопротивления).
2. Определим угловое ускорение по формуле для угловой скорости при равно-переменном движении:
128 Лекция 17
Тогда
3. Определим момент инерции колеса, считая его сплошным цилиндром:
4. Определяем величину тормозного момента — момента трения
в подшипниках: Мдв = 0; —Мтр = Jε ;
-Мтр = 87,5(-0,35); Мтр = 30,625 Н∙м.
Пример 3. Шкив приводится во вращение ременной передачей (рис. 17.10). Натяжение ведущей ветви ремня S 1 = 120 Н, ведомой — S 2 = 50 Н. Масса шкива 200 кг, диаметр 80 мм, момент сопротивления в подшипниках 1,2 Н∙м. Определить угловое ускорение вала, пренебрегая его массой. Шкив считать тонкостенным цилиндром.
Решение
1. Используем основное уравнение динамики M∑ = J ε .
2. Определяем суммарный момент внешних cил
3. Рассчитываем момент инерции шкива, влиянием вала пренебрегаем:
4. Определяем угловое ускорение шкива
Тема 1.15. Общие теоремы динамики 129
Контрольные вопросы и задания
1. Тело массой 10 кг поднято на высоту 6 м. Определите потенциальную энергию тела и работу, которую совершит тело при падении с этой высоты.
2. Материальная точка массой 16 кг, движущаяся со скоростью 10 м/с, остановилась через 40 с. Определите величину тормозной силы.
3. Тело массой 9,2 кг двигалось из состояния покоя 3с с ускорением 4 м/с2 под действием силы F . Определите запас кинетической энергии, накопленный телом.
4. Сплошной однородный цилиндр вращается вокруг продольной оси (рис. 17.11). От каких параметров зависит момент инерции
5. Определите вращающий момент на шкиве (рис. 17.12); d = 60 мм.
6. По результату решения предыдущей задачи (вопрос 5) определите момент инерции шкива, если, двигаясь из состояния покоя, он приобрел угловую скорость 50 рад/с за 10 с.
Примечание. При ответах на контрольные вопросы ускорение свободного падения можно принимать равным 10 м/с2.
5 - 8060 Олофинская
130 Практическое занятие 1
ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ПО РАЗДЕЛУ
«Теоретическая механика»
Практическое занятие 1
Дата: 2018-12-21, просмотров: 494.