Инструментальные стали и сплавы
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

По назначению инструментальные стали делятся на стали для режущего, измерительного и штампового инструмента. Кроме сталей, для изготовления режущего инструмента применяются металлокерамические твёрдые сплавы и минералокерамические материалы. Режущий инструмент работает в сложных условиях, подвержен интенсивному износу, при работе часто разогревается. Поэтому материал для изготовления режущего инструмента должен обладать высокой твёрдостью, износостойкостью и теплостойкостью. Теплостойкость – это способность сохранять высокую твёрдость и режущие свойства при длительном нагреве.

Углеродистые инструментальные стали содержат 0,7…1,3 % углерода. Они маркируются буквой У и цифрой, показывающими содержание углерода в десятых долях процента (У7, У8, У9, ..., У13). Буква А в конце марки показывает, что сталь высококачественная (У7А, У8А, ..., У13А). Кроме того, эти стали достаточно дёшевы и в незакалённом состоянии сами хорошо обрабатываются.

52

Низколегированные инструментальные стали содержат в сумме около 1…3 % легирующих элементов. Они обладают повышенной по сравнению с углеродистыми сталями прокаливаемостью, но теплостойкость их невелика – до 400 °С. Основные легирующие элементы – хром, кремний, вольфрам, ванадий.

Быстрорежущие стали – предназначены для работы при высоких скоростях резания. Главное их достоинство – высокая теплостойкость (до 650 °С). Это достигается за счёт большого количества легирующих элементов – вольфрама, хрома, молибдена, ванадия, кобальта. Маркируются быстрорежущие стали буквой Р, число после которой показывает среднее содержание вольфрама в %. Далее идут обозначения и содержание других легирующих элементов. Содержание углерода во всех быстрорежущих сталях приблизительно 1 %, а хрома – 4 %. Поэтому эти элементы в марке не указываются. Например, Р18,

Р9, Р6М5, Р6М5Ф2К8.

Чугуны

Чугуном называют сплав железа с углеродом, содержащий от 2,14 до 6,67 % углерода. Но это теоретическое определение. На практике содержание углерода в чугунах находится в пределах 2,5…4,5 %. В качестве примесей чугун содержит Si, Мn, S и Р.

Классификация чугунов. В зависимости от того, в какой форме содержится углерод в чугунах, различают следующие их виды. В белом чугуне весь углерод находится в связанном состоянии в виде цементита. Структура белого чугуна соответствует диаграммеFе-Fе3С.В сером чугуне большая часть углерода находится в виде графита, включения которого имеют пластинчатую форму. В высокопрочном чугуне графитные включения имеют шаровидную форму, а в ковком – хлопьевидную. Содержание углерода в виде цементита в сером, высокопрочном иковкомчугунах можетсоставлять неболее0,8 %.

Белый чугун обладает высокой твёрдостью, хрупкостью и очень плохо обрабатывается. Поэтому для изготовления изделий он не используется и применяется как предельный чугун, т.е. идёт на производство стали. Для деталей с высокой износостойкостью используется чугун с отбеленной поверхностью, в котором основная масса металла имеет структуру серого чугуна, а поверхностный слой – белого чугуна. Машиностроительными чугунами, идущими на изготовление деталей, являются серый, высокопрочный и ковкий чугуны. Детали из них изготовляются литьём, так как чугуны имеют очень хорошие

53

литейные свойства. Благодаря графитным включениям эти чугуны хорошо обрабатываются, имеют высокую износостойкость, гасят колебания и вибрации. Но графитные включения уменьшают прочность.

Таким образом, структура машиностроительных чугунов состоит из металлической основы и графитных включений. По металлической основе они классифицируются на ферритный чугун (весь углерод содержится в виде графита), феррито-перлитныйи перлитный (содержит 0,8 % углерода в виде цементита). Характер металлической основы влияет на механические свойства чугунов: прочность и твёрдость выше у перлитных, а пластичность – у ферритных.

Серый чугун имеет пластинчатые графитные включения. Структура серого чугуна схематически изображена на рисунке 25а. Получают серый чугун путём первичной кристаллизации из жидкого сплава.

а)

 

б)

   
    в)
         
         
         

Рис. 25. Схематическое изображение структур чугунов:

а – серого; б – высокопрочного; в – ковкого

На графитизацию (процесс выделения графита) влияют скорость охлаждения и химический состав чугуна. При быстром охлаждении графитизации не происходит и получается белый чугун. По мере уменьшения скорости охлаждения получаются, соответственно, перлитный, феррито-перлитныйи ферритный серые чугуны. Способствуют графитизации углерод и кремний.

Кремния содержится в чугуне от 0,5 до 5 %. Иногда его вводят специально. Марганец и сера препятствуют графитизации. Кроме того, сера ухудшает механические и литейные свойства. Фосфор не влияет на графитизацию, но улучшает литейные свойства.

54

Механические свойства серого чугуна зависят от количества и размера графитных включений. По сравнению с металлической основой графит имеет низкую прочность. Поэтому графитные включения можно считать нарушениями сплошности, ослабляющими металлическую основу. Так как пластинчатые включения наиболее сильно ослабляют металлическую основу, серый чугун имеет наиболее низкие характеристики как прочности, так и пластичности среди всех машиностроительных чугунов. Уменьшение размера графитных включений улучшает механические свойства. Измельчению графитных включений способствует кремний.

Маркируется серый чугун буквами СЧ и числом, показывающим предел прочности в десятых долях мегапаскаля. Так, чугун СЧ 35 имеет σв=350 МПа. Имеются следующие марки серых чугунов:

СЧ 10, СЧ 15, СЧ 20, ..., СЧ 45.

Высокопрочный чугун имеет шаровидные графитные включения. Структура высокопрочного чугуна изображена на рисунке 23б. Получают высокопрочный чугун добавкой в жидкий чугун небольшого количества щелочных или щелочноземельных металлов, которые округляют графитные включения в чугуне, что объясняется увеличением поверхностного натяжения графита. Чаще всего для этой цели применяют магний в количестве 0,03…0,07 %. По содержанию других элементов высокопрочный чугун не отличается от серого.

Шаровидные графитные включения в наименьшей степени ослабляют металлическую основу. Именно поэтому высокопрочный чугун имеет более высокие механические свойства, чем серый. При этом он сохраняет хорошие литейные свойства, обрабатываемость резанием, способность гасить вибрации и т.д.

Маркируется высокопрочный чугун буквами ВЧ и цифрами, показывающими предел прочности и десятых долях мегапаскаля. Например, чугун ВЧ 60 имеет σв = 600 МПа. Существуют следующие марки высокопрочных чугунов: ВЧ 35, ВЧ 40, ВЧ 45, ВЧ 50, ВЧ 60, ВЧ 70, ВЧ 80, ВЧ 100. Применяются высокопрочные чугуны для изготовления ответственных деталей – зубчатых колёс, валов и др.

Ковкий чугун имеет хлопьевидные графитные включения (рис. 23в). Его получают из белого чугуна путём графитизирующего отжига, который заключается в длительной (до 2 суток) выдержке при температуре 950…970 °С. Если после этого чугун охладить, то получается ковкий перлитный чугун, металлическая основа которого состоит из перлита и небольшого количества (до 20 %) феррита. Такой чугун называют также светлосердечным.

55

Если в области эвтектоидного превращения (720…760 °С) проводить очень медленное охлаждение или даже дать выдержку, то получится ковкий ферритный чугун, металлическая основа которого состоит из феррита и очень небольшого количества перлита (до 10 %). Этот чугун называют черносердечным, так как он содержит сравнительно много графита.

Маркируется ковкий чугун буквами КЧ и двумя числами, показывающими предел прочности и относительное удлинение в %. Так, чугун КЧ 45-7имеет σв = 450 МПа и δ= 7 %. Ферритные ковкие чугуны (КЧ33-8,КЧ37-12)имеют более высокую пластичность, а перлитные (КЧ50-4,КЧ60-3)– более высокую прочность. Применяют ковкий чугун для деталей небольшого сечения, работающих при ударных и вибрационных нагрузках.

Дата: 2018-09-13, просмотров: 372.