Литература к разделу
1. Виноградова, Л.В. Методика преподавания математики в средней школе / Л.В. Виноградова. – Ростов н/Д.: Феникс, 2005. – 256 с.
2. Груденов, Я.И. Совершенствование методики работы учителя математики: книга для учителя / Я.И. Груденов. – М.: Просвещение, 1990. – 224с.
3. Епишева, О.Б. Общая методика преподавания математики в школе / О.Б. Епишева. – Тобольск: ТГПИ им. Д.И. Менделеева, 1997. – 191 с.
4. Липатникова, И.Г. Практикум по теории и методике обучения математике / И.Г. Липатникова. – Екатеринбург, 2009. – 174 с.
5. Методика и технология обучения математике. Курс лекций / под науч. ред. Н.Л. Стефановой, Н.С. Подходовой. – М.: Дрофа, 2005. – 416 с.
6. Петрова, Е.С. Теория и методика обучения математике: В 3 ч. Ч. 1. Общая методика / Е.С. Петрова. – Саратов: Изд-во Сарат.ун-та, 2004. – 84 с.
7. Рогановский, Н. М. Методика преподавания математики в средней школе: учеб. пособие / Н. М. Рогановский. – Минск: Выш. шк., 2000. – 267 с.
8. Саранцев, Г.И. Методика обучения математике в средней школе / Г.И. Саранцев. – М.: Просвещение, 2002. – 224 с.
9. Терембекова, А.А. Методика преподавания математики / А.А. Терембекова. – М.: ВЛАДОС, 2003. – 176 с.
МАТЕМАТИЧЕСКИЕ ПОНЯТИЯ, ПРЕДЛОЖЕНИЯ, УПРАЖНЕНИЯ, ТЕОРЕМЫ, ЗАДАЧИ, АЛГОРИТМЫ, ПРАВИЛА, ТЕХНОЛОГИЧЕСКИЕ СХЕМЫ ОБУЧЕНИЯ ЭЛЕМЕНТАМ МАТЕМАТИЧЕСКОГО СОДЕРЖАНИЯ
Задание 3.1. Методы научного познания в обучении математике
Примерное содержание.
Эмпирические методы познания. Наблюдение, описание, измерение и эксперимент и их роль в зарождении математических знаний, в становлении математики как самостоятельной теоретической дисциплины, в обучение математике школьников. Наблюдение, опыт и измерения как средства создания в процессе обучения специальных ситуаций и предоставления учащимся возможности извлечь из них очевидные закономерности, математические факты, идеи доказательства и т.д. Связь эмпирических методов познания и эвристических методов обучения.
Анализ и синтез. Анализ и синтез с позиций педагогов, психологов, методистов; их взаимосвязь. Приемы аналитико-синтетичного поиска решения задач, вывода формул, доказательства теорем. Анализ текста задачи и анализ решения задачи. Методы восходящего анализа и нисходящего анализа при поиске решения задач.
Сравнение и аналогия. Сравнение и аналогия с позиций педагогической и методической теорий. Использование сравнения и аналогии при решении задач и изучении теоретических вопросов. Требования, предъявляемые к сравнениям. Типичные ошибки учащихся, допускаемые ими при использовании аналогии, пути их предупреждения. Роль сравнения и аналогии при выдвижении гипотез, решении исследовательских и творческих задач.
Обобщение и специализация, абстрагирование и конкретизация. Определения данных логических приемов, применяемых в процессе познания. Конкретные примеры. Задачи, основанные на обобщающих связях. Виды абстракций и их использование в преподавании математики. Многоступенчатость процесса абстрагирования. Вычленение отдельных этапов абстрагирования. Использование названных логических приемов в обучении математике как средства повышения эффективности ее преподавания.
Индукция и дедукция. Понятие умозаключения. Логически необходимые и вероятностные (правдоподобные) умозаключения. Индукция и дедукция как формы мышления и методы рассуждений, их взаимосвязь и особенности использования в процессе обучения математике. Особенности индуктивно-дедуктивного и дедуктивно-индуктивного способов объяснения материала. Виды индукции: полная, неполная и математическая.
Математические методы познания. Понятие о математическом моделировании. Различие математических моделей. Роль математического моделирования в решении текстовых, в частности, сюжетных задач.
Литература
1. Буткин, Г.А. Усвоение научных понятий в школе / Г.А. Буткин, И.А. Володарская, Н.Ф. Талызина. – М.: Полиграф сервис, 1999. – 288с.
2. Игошин В.И. Математическая логика как педагогика математики / В.И. Игошин. – Саратов: Наука, 2009. – 360 с.
3. Саранцев, Г.И. Методология методики обучения математике / Г.И. Саранцев. – Саранск: Красный Октябрь, 2001. – 144 с.
4. Формирование приемов математического мышления / Под ред. Н.Ф. Талызиной. – М.: ТОО «Вентана-Граф», 1995. – 231 с.
5. Фридман, Л.М. Теоретические основы методики обучения математике / Л.М. Фридман. – М.: Флинта, 1998. – 224 с.
6. Фройденталь, Г. Математика как педагогическая задача. В 2 т. / Г. Фройденталь. – М.: Просвещение, 1982. – Т. 1. – 208 с; Т. 2. – 192 с.
Задание 3.2. Задачи в обучении математике
Примерное содержание. Понятие математической задачи. Ее основные компоненты. Роль и место задач в обучении математике. Решение задач в контексте развивающего обучения математике. Критерии сложности и трудности задач. Различные дидактические цели решения математических задач. Классификация задач. Особенности мыслительной деятельности в процессе решения задач. Пути реализации поиска решения задачи.
Особенности структуры сборников задач. Решение задач и идея гуманизации обучения.
Литература
1. Василевский, А.Б. Обучение решению задач по математике / А.Б. Василевская. – Мн.: Высшая школа, 1988.
2. Канин, Е.С. Учебные математические задачи / Е.С. Канин. – Киров: Изд-во ВятГГУ, 2003. –154 с.
3. Карп, А П. Даю уроки математики...: кн. для учителя: из опыта работы / А.П. Карп. – М.: Просвещение, 1992. – 190 с.
4. Колягин, Ю.М. Задачи в обучении математике: В 2 ч. – Ч.1. Математические задачи как средство обучения и развития учащихся / Ю.М. Колягин. – М.: Просвещение, 1977. – 108с.
5. Колягин, Ю.М. Задачи в обучении математике: В 2 ч. – Ч.2: Обучение математике через задачи и обучение решению задач / Ю.М. Колягин. – М.: Просвещение, 1977. – 120 с.
6. Крупич, В.И. Теоретические основы обучения решению школьных математических задач / В.И. Крупич. – М.: Прометей, 1995. – 166 с.
7. Кузнецов, В.И. Принципы активной педагогики: Что и как преподавать в современной школе: Учеб. пособие для студ. высш. пед. учеб. Заведений / В.И. Кузнецов. – М.: Издательский центр «Академия», 2001. – 120 с.
8. Матушкина, З.П. Приемы обучения учащихся решению математических задач / З.П. Матушкина. – Курган, 2003. – 140 с.
9. Ульянова, И.В. Задачи в обучении математике. История, теория, методика / И.В. Ульянова. – Саранск, 2006. – 65 с.
10. Фридман, Л.М. Как научиться решать задачи / Л.М. Фридман. – М.: Просвещение, 2005. – 255 с.
11. Фридман, Л.М. Сюжетные задачи по математике. История, теория, методика / Л.М. Фридман. – М.: Школьная Пресса, 2002. – 208 с.
12. Шевкин, А.В. Обучение решению текстовых задач в 5-6 классах: метод. пособие для учителя / А.В. Шевкин. – М.: ТИД «Русское слово-РС», 2001. – 207 с.
13. Эрдниев, О.П. От задачи к задаче – по аналогии. Развитие математического мышления / Под ред. П.М.Эрдниева. – М.: АО «Столетие», 1998. – 288 с.
Задание 3.3. Роль задач в формировании математических понятий
Примерное содержание. Введение математических понятий конкретно-индуктивным и абстрактно-дедуктивным методами. Общие приемы учебной деятельности по усвоению математических понятий. Формирование у школьников способности к актуализации основных факторов, относящихся к определенному понятию. Роль задач в отработке четкости и точности формулировок определений понятий. Виды таких задач. Задачи: (а) на распознание математических объектов; (б) связанных с формулировками определений новых понятий; (в) на использование данного понятия при исследовании теоретических вопросов; (г) связанные с оперированием данным понятием в нестандартной ситуации.
Литература
1. Болтянский, В.Г. Использование логической символики при работе с определениями / В.Г. Болтянский // Математика в школе. – 1973.– № 5. – С.45-50.
2. Василевский, А.Б. Обучение решению задач по математике / А.Б. Василевский. – Мн.: Высшая школа, 1988. – 255 с.
3. Виленкин, Н.Я. Определения в школьном курсе математики и методика работы с ними / Н.Я. Виленкин, С.К. Абайдулин, Р.К. Товарткиладзе // Математика в школе. – 1984. – № 4. – С.43.
4. Груденов, Я.И. Изучение определений, аксиом и теорем / Я.И. Груденов. – М.: Просвещение, 1981. – 95 с.
5. Дразнин, И.Е. О работе над определениями / И.Е. Дразнин // Математика в школе. – 1995. – № 5. – С.20-21.
6. Крупич, В.И. Теоретические основы обучения решению школьных математических задач / В.И. Крупмч. – М.: Прометей, 1995. – 166 с.
7. Никитин, В.В. Определения математических понятий в курсе средней школы / В.В. Никитин, К.А. Рупасов. – М.: Учпедгиз, 1963. – 150 с.
8. Саранцев, Г.И. Формирование математических понятий в средней школе / Г.И. Саранцев // Математика в школе. – 1998. – № 6. – С.27-34.
9. Саранцев, Г.И. Функции задач в процессе обучения / Г.И. Саранцев, Е.Ю. Миганова // Педагогика. – 2001. – № 9. – С. 19-24.
10. Ульянова, И.В. Задачи в обучении математике. История, теория, методика / И.В. Ульянова. – Саранск, 2006. – 65 с.
11. Усова, А.В. Эволюция теории формирования научных понятий / А.В. Усова // Педагогика. – 1998. – № 8. – С. 30-34.
12. Финкельштейн, В.М. О подготовке учеников к изучению нового понятия, новой теоремы / В.М. Финкельштейн // Математика в школе. – 1996. – № 6. – C. 21-25.
13. Холодная, М.А. Интегральные структуры понятийного мышления / М.А. Холодная. – М.: Барс», 1997. – 392 с.
Задание 3.4. Сюжетные задачи по математике
Примерное содержание. История сюжетных задач и методов их решения. Генезис сюжетных задач. Анализ структуры сюжетных задач. Простые и сложные сюжетные задачи. Виды и методы решения сюжетных задач. Графическое решение сюжетных задач. Методика обучения учащихся решению сюжетных задач. Информационное моделирование сюжетных задач.
Литература
1. Василевский, А.Б. Обучение решению задач по математике / А.Б. Василевский. – Мн.: Высшая школа, 1988. – 255 с.
2. Демидова, А.Н. Теория и практика решения текстовых задач / А.Н. Демидова, И.К. Тонких – Просвещение, 200. – 214 с.
3. Зияитдинов, Р.Г. Решение сюжетных задач в 5-6 классах: Учебное пособие / Р.Г.Зияитдинов. – Тверь: Твер. гос. ун-т, 1996. – 68 с.
4. Крупич, В.И. Теоретические основы обучения решению школьных математических задач / В.И. Крупмч. – М.: Прометей, 1995. – 166 с.
5. Лебедева С.В. Информационные модели сюжетных задач / С.В. Лебедева, В.В. Пилипенко // Учитель – ученик: проблемы, поиски, находки: Сборник научно-методических трудов: Выпуск 5 / Составители С.В.Лебедева, Т.А.Капитонова – Саратов: ИЦ «Наука», 2007. – С.58-62.
6. Лебедева С.В. Задачи на движение в школьном курсе математики / С.В. Лебедева, С.С. Харькова // Учитель – ученик: проблемы, поиски, находки: Сборник научно-методических трудов: Выпуск 5 / Составители С.В.Лебедева, Т.А.Капитонова – Саратов: ИЦ «Наука», 2007. – С.48-57.
7. Орехов, Ф.А. Решение задач методом составления уравнений: Учебное пособие / Ф.А.Орехов. – М.: Просвещение, 1971. – 160 с.
8. Пойа, Д. Математическое открытие / Д.Пойа. – М.: Наука, 1976. – 448 с.
9. Сорокин, П.И. Занимательные задачи по математике. С решениями и методическими указаниями: Пособие для учителей I–IV классов / П.И. Сорокин. – М.: Просвещение, 1967. – 167 с.
10. Тоом, А.Л. Текстовые задачи: приложения или умственные манипулятивы / А.Л. Тоом // Математика. – 2004. – № 47.
11. Ульянова, И.В. Задачи в обучении математике. История, теория, методика / И.В. Ульянова. – Саранск, 2006. – 65 с.
12. Фефилова, Е.Ф. Теория и методика обучения математике: систематизация знаний и умений по решению сюжетных задач: Учебное пособие / Е.Ф.Фефилова. – Архангельск: Поморский университет, 2004. – 160 с.
13. Фридман, Л.М. Сюжетные задачи по математике. История, теория. Методика: Учебн. пособие для учителей и студентов педвузов и колледжей / Л.М.Фридман. – М.: Школьная Пресса, 2002. – 208 с.
14. Цукарь, А.Е. Схематизация и моделирование при решении текстовых задач / А.Е. Цукарь // Математика в школе. – 1998. – №5. – С.48-54.
Задание 3.5. Метод математического моделирования как один из способов решения текстовой задачи
Примерное содержание. Сущность метода. Основные этапы решения задач методом математического моделирования. Виды задач, решаемые данным методом. Факты из истории математики и метод математического моделирования. Разные способы ознакомления учащихся с данным методом. Подборка задач по избранной студентом узловой теме школьного курса математики, решаемых данным методом. Достоинства и недостатки метода математического моделирования.
Литература
1. Василевский, А.Б. Обучение решению задач по математике / А.Б. Василевский. – Мн.: Высшая школа, 1988. – 255 с.
2. Володарская, И. Моделирование и его роль в решении задач/ И. Володарская, Н. Салмина // Математика. –2006. – №18 – С 2-7.
3. Демидова, А.Н. Теория и практика решения текстовых задач / А. Н. Демидова, И. К. Тонких. – Просвещение, 2003. – 214 с.
4. Зайчева, С.А. Решение составных задач на уроках математики/ С. А. Зайцева, И. И. Целищева. – М.: Чистые пруды, 2006. – 32 с.
5. Зиятдинов, Р.Г. Решение текстовых задач: Учебное пособие / Р.Г.Зиятдинов. – Тверь: Твер. гос. ун-т, 1996. – 68 с.
6. Лебедева С.В. Информационные модели сюжетных задач / С.В. Лебедева, В.В. Пилипенко // Учитель – ученик: проблемы, поиски, находки: Сборник научно-методических трудов: Выпуск 5 / Составители С.В.Лебедева, Т.А.Капитонова – Саратов: ИЦ «Наука», 2007. – С.58-62.
7. Лебедева С.В. Задачи на движение в школьном курсе математики / С.В. Лебедева, С.С. Харькова // Учитель – ученик: проблемы, поиски, находки: Сборник научно-методических трудов: Выпуск 5 / Составители С.В.Лебедева, Т.А.Капитонова – Саратов: ИЦ «Наука», 2007. – С.48-57.
8. Майер Р.А. Задачи направленные на развитие функционального стиля мышления школьников // Роль и место задач в обучении математике: Сборник статей: Выпуск 1. – Москва, 1973. – С.36-50.
9. Мышкис, А. Д. Элементы теории математических моделей / А.Д. Мышкис. – М.: КомКнига, 2007. – 192 с.
10. Рудник, А. В. Переформулирование текста задачи как путь отыскания ее решения. Из опыта преподавания математики в школе: пособие для учителей / А. В. Рудник. – М.: Просвещение, 1978. –123 с.
11. Скворцова, М. Математическое моделирование / М. Скворцова // Математика. – 2003. – № 14. – С. 1-4.
12. Фридман, Л.М. Как научиться решать задачи / Л.М. Фридман; Моск.психол.-социал.ин-т. – М.: Моск.психол.-социал.ин-т, 1999. – 240с.
13. Шевкин, А.В. Материалы курса «Текстовые задачи в школьном курсе математики»: Лекции 1-4 / А.В.Шевкин. – М.: Педагогический университет «Первое сентября», 2006. – 88 с.
Задание 3.6. Обучение математическим доказательствам в школе
Примерное содержание. Проблема обучения школьников доказательству в учебно-методической литературе. Логические основы доказательства в школьном курсе математики. Методические концепции обучения доказательству.
Практические аспекты обучения учащихся доказательствам. Формирование потребности в логических рассуждениях и умений выполнять дедуктивные выводы в 5-6 классах. Формирование умения доказывать на первых уроках геометрии в 7 классе. Составление геометрических задач на готовых чертежах. Обучение школьников доказательству в 7-8 классах. Обучение опровержению предложенных доказательств (9-11 классы).
Методы доказательства в школьном курсе математики: общематематические и специальные. Организационные формы работы с теоремой. Этапы работы с теоремой. Методика работы с теоремой.
Литература
1. Груденов, Я.И. Изучение определений, аксиом и теорем / Я.И. Груденов . – М.: Просвещение, 1981. – 95 с.
2. Далингер, В.А. Методика обучения учащихся доказательству математических предложений / В.А. Далингер. – М.: Просвещение, 2006. – 256 с.
3. Игошин, В.И.. Математическая логика как педагогика математики / В.И. Игошин. – Саратов: ИЦ «Наука», 2009. – 360 с.
4. Купиллари, А. Трудности доказательств. Как преодолеть страх перед математикой / А. Купиллари – М.: Техносфера, 2002. – 304 с.
5. Новосельцева, З.И. Некоторые примеры мотивации изучения теорем / З.И. Новосельцева // Математика в школе. – 1985. – № 5. – С.29.
6. Пойа, Д. Математика и правдоподобные рассуждения./ Д Пойа, Под редакцией С.А.Яновской. Пер. с английского И.А.Вайнштейна. – М.: Наука, 1975 – 464 с.
7. Саранцев, Г.И. Обучение математическим доказательствам и опровержениям в школе / Г.И. Саранцев – М.: ВЛАДОС, 2006. – 182 с.
8. Тимофеева, И.Л. Некоторые замечания о методе доказательства от противного / И.Л. Тимофеева // Математика в школе. – 1994. – № 3. – С.36-38.
9. Тимофеева, И.Л. О косвенных методах доказательства в обучении математике / И.Л. Тимофеева // Математика в школе. – 2007. – № 1. – С.15-19.
10. Финкельштейн, В.М. О подготовке учеников к изучению нового понятия, новой теоремы / В.М. Финкельштейн // Математика в школе. – 1996. – № 6. – C. 21-25.
11. Формирование приемов математического мышления /под ред. Н.Ф. Талызиной. – М.: ВентанаГраф, 1995. – 233 с.
Задание 3.7. Упражнения в обучении математике
Примерное содержание. Математическое упражнение как основное звено процесса обучения математике. Типология математических упражнений. Упражнения: обучающие, тренировочные, творческие. Использование интерактивных (компьютерных) упражнений в развитии интереса и познавательной активности школьников при изучении математики. Упражнения, связанные с формированием общих приемов учебной деятельности в обучении математике. Роль записи в тетрадях учащихся и на доске при выполнении системы упражнений.
Системы математических упражнений по избранным темам школьного курса математики.
Литература
1. Липатникова, И.Г. Устные упражнения на уроках математики: 5 класс: Методические рекомендации / И.Г. Липатникова, Л.Г. Петерсон. – М.: УМЦ «Школа 2000», 2007. – 128 с.
2. Карп, А.П. Даю уроки математики...: кн. для учителя / А.П. Карп. – М.: Просвещение, 1992. –192 с
3. Математические загадки. Интерактивные развивающие упражнения: Компьютерная программа: CD-ROM. – Волгоград: Учитель, 2010.
4. Окунев, А.А. Спасибо за урок, дети!: О развитии творческих способностей учащихся: кн. для учителя / А.А. Окунев. – М.: Просвещение, 1988. – 128 с.
5. Перова, М.Н. Дидактические игры и упражнения по математике / М.Н. Перова. – М., 1996. – 144 с.
6. Саранцев, Г.И. Упражнения в обучении математике / Г.И. Саранцев. – М.: Просвещение, 2005. – 255 с.
Задание 3.8. Методика изучения алгоритмов и правил в школьном курсе математики
Примерное содержание. Сущность понятий алгоритма и правила. Логико-математический анализ алгоритмов и правил школьного курса математики. Основные этапы изучения правил и алгоритмов. Методика изучения правил и алгоритмов на основе теории поэтапного формирования умственных действий. Логико-алгоритмичнеский метод (алгоритмизация обучения). Формирование алгоритмической культуры учащихся.
Литература
1. Игошин, В.И.. Математическая логика как педагогика математики / В.И. Игошин. – Саратов: ИЦ «Наука», 2009. – 360 с.
2. Коротяев, Б.И. Учение – процесс творческий / Б.И. Коротяев – М.: Просвещение, 1989. – 160с.
3. Ланда, Л.И. Алгоритмизация в обучении / Л.И. Ланда. – М.: Просвещение, 1966. – 523 с.
Задание 3.9. Методика формирования математических понятий
Примерное содержание. «Понятие» в психолого-педагогической, философской, учебно-методической литературе. Объём, содержание и определение понятия. Логическая структура определений понятий, виды и способы определения математических понятий в школьном курсе математики. Общеметодические требования к формированию и усвоению математических понятий. Методическая система формирования математических понятий.
Литература
1. Груденов, Я.И. Изучение определений, аксиом и теорем / Я.И. Груденов. – М.: Просвещение, 1981. – 95 с.
2. Игошин, В.И.. Математическая логика как педагогика математики / В.И. Игошин. – Саратов: ИЦ «Наука», 2009. – 360 с.
3. Коротяев, Б.И. Учение – процесс творческий / Б.И. Коротяев – М.: Просвещение, 1989. – 160с.
4. Никитин, В.В. Определения математических понятий в курсе средней школы / В.В. Никитин, К.А. Рупасов. – М.: Учпедгиз, 1963. – 150 с.
5. Холодная, М.А. Интегральные структуры понятийного мышления / М.А. Холодная. – М.: Барс», 1997. – 392 с.
УРОК МАТЕМАТИКИ
Задание 3.10. Современный урок математики
Примерное содержание. Урок – основное звено процесса обучения. Сущность урока. Общие требования к уроку (дидактические, воспитательные, психологические, развивающие и др.). Особенности современного урока математики. Структура и типология современных уроков математики. Виды уроков. Моделирование, проектирование и конструирование современного урока математики. Анализ и самоанализ урока.
Конструирование современного урока математики с использованием цифровых образовательных ресурсов (ЦОР).
Литература
1. Алёшина, Т.И. Урок математики: применение дидактических материалов с профессиональной направленностью / Т.И. Алёшина. – М.: Высшая школа, 1991. – 64 с.
2. Васильева Г.Н. Информационно-коммуникационные технологии в обучении математики: Учебное пособие / Г.Н. Васильева, А.П. Шестаков, Н.А. Ситникова, А.А. Широких. – Пермь, 2006. – 170 с.
3. Векслер, С.И. Современные требования к уроку / С.И. Векслер. – М.: Просвещение, 1985. – 128 с.
4. Грицевский, И.М. От учебника – к творческому замыслу урока. / И.М. Грицевский, С.Э. Грицевская. – М: Просвещение, 1990. – 207с.
5. Гузеев, В.В. К формализации дидактики: системный классификатор организационных форм обучения (уроков) / В.В. Гузеев // Школьные технологии. – 2002. – N 4. – С.49-57.
6. Гузеев, В.В. Проектирование и анализ урока / В.В. Гузеев // Директор школы. – 2005.– № 7. – С. 44-47.
7. Дайри, Н.Г. Главное усвоить на уроке / Н.Г. Дайри – М.: Знание, 1984. – 80 с.
8. Ершова, А.П. Режиссура урока, общения и поведения учителя / А.П. Ершова, В.М. Букатов – М.: МПСИ, 2006. – 336 с.
9. Зильберберг, Н.И. Урок математики: подготовка и проведение: книга для учителя / Н.И. Зильберберг. – М.: Просвещение; 1995. – 178 с.
10. Карп, А.П. Даю уроки математики...: кн. для учителя / А.П. Карп. – М.: Просвещение, 1992. –192 с.
11. Карпушина, Н.Н. Нетрадиционная форма урока: замысел, организация, анализ / Н.Н. Карпушина // Математика. – 1998. – № 9. – С.12-13.
12. Конаржевский, Ю.А. Анализ урока / Ю.А. Конаржевский. – М.: Центр «Пед. поиск», 2000. – 336 с.
13. Крымова, Л.Н. Интерактивная доска на уроках математики / Л.Н. Крымова //Математика в школе. – 2008. – №10. – С.31-39.
14. Культура современного урока / И.В. Бабурова, С.В. Бадмаева, Е.Ф. Баранова и др. Под ред. док.пед.наук, проф. Щурковой Н.Е. – М.: Педагогическое общество, 2001. – 112 с.
15. Манвелов, С.Г. Конструирование современного урока математики / С.Г. Манвелов – М.: Просвещение, 2005. – 176 с.
16. Морева, Н.А. Современная технология учебного занятия / Н.А. Морева. – М.: Просвещение, 2007. – 158 с.
17. Онищук, В.А. Урок в современной школе: Пособие для учителей / В.А.Онищук. – М.:, 1986. – 158 с.
18. Поташник, М.М. Как подготовить и провести открытый урок (современная технология) / М.М. Поташник, М.В. Левит – М.: Педагогическое общество России, 2003. – 112 с.
19. Рыжик В.И. 25000 уроков математики: кн. для учителя / В.И. Рыжик. – М.: Просвещение, 1993. – 238 с.
20. Севрук, А.И. Мониторинг качества преподавания в школе: Учебное пособие / А.И. Севрук, Е.А. Юнина – М.: Педагогическое общество России, 2004. – 144 с.
21. Симонов, В.П. Урок: планирование, организация и оценка эффективности / В.П. Симонов. – М.: УЦ «Перспектива», 2010. – 207 с.
22. Тучкова, Т.У. Урок как показатель грамотности и мастерства учителя / Т.У. Тучкова, В.И. Фомин. – М.: ЦГЛ: АПКиПРО, 2003. – 64 с.
23. Яковлев, Н.М. Методика и техника урока в школе / Н.М. Яковлев, А.М. Сорох. – М.: Просвещение, 1985. – 208 с.
Задание 3.11. Устная работа на уроках математики
Примерное содержание. Различные формы устной работы в начальной школе и в 5-6 классах. Уроки устной работы. Устные упражнения – одна из важнейших составляющих развивающего обучения; устные упражнения в учебниках по математике. Устная контрольная работа. Формирование прочных вычислительных навыков с помощью устного счета. Быстрый счет без калькулятора.
Устная работа учащихся старших классов на уроках геометрии, алгебры и математического анализа. Формирование пространственного воображения учащихся при выполнении устных упражнений по стереометрии.
Литература
1. Автайкина, А.К. Некоторые формы организации устного счета / А.К. Автайкина // Математика в школе. – 1991. – № 3. – С. 21.
2. Борткевич, Л.К. Повышение вычислительной культуры учащихся (об орг. устного счета в V-XI кл.) / Л.К. Борткевич // Математика в школе. – 1995. – №5. – С.13-19.
3. Ермилова, Т.В. Устная работа в V классе / Т.В. Ермилова // Математика в школе. – 2006. – № 1. – С. 26-31.; № 2. – С.38-41.
4. Карп, А.П. Даю уроки математики...: кн. для учителя / А.П. Карп. – М.: Просвещение, 1992. –192 с.
5. Кононов, А.Я. Устные занятия по математике. 6-9 классы: Пособие для учителя / А.Я.Кононов. – М.: Генжер, 1998. – 80 с.
6. Липатникова, И.Г. Устные упражнения на уроках математики / И.Г. Липатникова // Математика для каждого. Концепция программы, опыт работы. Выпуск 3. – М., 2000. – С. 216-219.
7. Лукин, Р.Д. Устные упражнения по алгебре и началам анализа / Р.Д. Лукин, Т.К. Лукина, И.С. Якунина. – М.: Просвещение, 1989. – 96 с.
8. Павленко, Т.А. Устная контрольная работа в V классе / Т.А. Павленко // Математика в школе. – 1999. – № 3. – С. 26.
9. Петерсон, Л.Г. Устные упражнения на уроках математики. 5 класс: Методическое пособие для учителей / Л.Г. Петерсон, И.Г. Липатникова. – М.: Ювента, 2004. – 128 с.
10. Родин, А.В. Цепочка – одна из форм устной работы / А.В. Родин // Математика в школе. – 1999. – № 5. – С. 2.
11. Хэндли, Б. Считайте в уме как компьютер / Б. Хэндли; пер. с англ. Е.А. Самсонов. – Мн.: Попурри, 2006. – 352 с.
12. Чекмарев, Я.Ф. Методика устных вычислений / Я.Ф. Чекмарев. – М.: Просвещение, 1970. – 238 с.
13. Юхнова, З.И. Поработаем устно в начале урока / З.И. Юхнова // Математика в школе. – 2000. – №10. – С. 21.
14. Якунина, М.С. Устные упражнения в курсе алгебры и начал анализа / М.С. Якунина // Математика в школе. – 1991. – №1. – С.16-20.
Задание 3.12. Актуализация знаний в процессе обучения математике
Примерное содержание. Понятия «актуализация знаний» и «актуализация жизненного опыта». Актуализация знаний и учёт жизненного познавательного опыта в процессе обучения математике. Актуализация в контексте проблемного обучения. Условия актуализации знаний и умений учащихся в процессе обучения математике. Формы актуализации знаний на уроке математики. Использование аудиовизуальных средств обучения в ходе актуализации математических знаний учащихся основной школы на этапе изучения нового материала. Актуализация знаний в процессе решения задач.
Актуализация знаний на уроке математики в начальной школе, в 5-6 классах, в 7-9 классах, в профильном обучении математике.
Литература
1. Гин, А.А. Приемы педагогической техники: свобода выбора. Открытость. Деятельность. Обратная связь. Идеальность / А.А. Гин – М.: Вита-Пресс, 2007. – 112 с.
2. Гузеев, Г.Г. К формализации дидактики: системный классификатор организационных форм обучения (уроков) / Г.Г. Гузеев // Школьные технологии. – 2002. – №4. – С .49-57.
3. Ксензова, Г.Ю. Перспективные школьные технологии: Учеб.-метод. пособие / Г.Ю. Ксензова – М.: Педагогич. общ-во России, 2000. – 224 с.
4. Кульневич, С.В. Не совсем обычный урок / С.В. Кульневич, Т.П. Лакоценина. – Воронеж: Учитель, 2001. – 173 с.
5. Кульневич, С.В. Совсем необычный урок / С.В. Кульневич, Т.П. Лакоценина. – Ростов н/Дону: «Учитель», 2006. – 288 с.
6. Селевко, Г.К. Педагогические технологии на основе активизации, интенсификации и эффективного управления / Г.К. Селевко – М.: НИИ «Школа технологий», 2005. – 288 с.
Задание 3.13. Основные формы изучения нового математического материала
Примерное содержание. Определение понятий нового, преимущественно нового, преимущественно знакомого и знакомого учебного материала.
Сравнительный анализ основных форм изучения нового материала на уроках математики: лекция, образец ответа, объяснение нового материала. Характеристика основных форм изучения преимущественно нового математического материала: лекция с использованием компьютерной презентации, беседа. Условия эффективности основных форм изучения преимущественно знакомого материала на уроках математики: рассказ, сказка, беседа, самостоятельная работа учащихся с источниками информации.
Литература
1. Бардин, К.В. Как научить детей учиться / К.В. Бардин. – М.: Просвещение, 1987. – 112 с.
2. Грицевский, И.М. От учебника – к творческому замыслу урока / И.М. Грицевский, С.Э. Грицевская. – М: Просвещение, 1990. – 207с.
3. Гузик, Н.П. Лекционно-семинарская система обучения / Н.П. Гузик, Н.П. Пучков – Киев: Рад, школа, 1979. – 96 с.
4. Дайри, Н.Г. Главное усвоить на уроке / Н.Г. Дайри – М.: Знание, 1984. – 80 с.
5. Карп, А.П. Даю уроки математики...: кн. для учителя / А.П. Карп. – М.: Просвещение, 1992. –192 с.
6. Кларин, М.В. Инновации в обучении. Метафоры и модели / М.В. Кларин. – М.: Наука, 1997. – 223 с.
7. Краевский, В.В. Основы обучения: Дидактика и методика: Учебное пособие для студентов высших учебных заведений / В.В. Краевский, А.В.Хуторской. – М.: Издательский центр «Академия», 2008. – 352 с.
8. Кулюткин, Ю.К. Эвристические методы в структуре решений / Ю.К. Кулюткин. – М.: Педагогика, 1970. – 232 с.
9. Любичева, В.Ф. Дидактические сказки в процессе обучения математике / В.Ф. Любичева, P.P. Мухамедьянова // Педагогика, – 2007. – № 6. – С.32-36
10. Окунев, А.А. Спасибо за урок, дети!: О развитии творческих способностей учащихся: кн. для учителя / А.А. Окунев. – М.: Просвещение, 1988. – 128 с.
11. Пидкасистый, П.И. Самостоятельная познавательная деятельность школьников в обучении: Теоретико-экспериментальное исследование / П.И. Пидкасистый. – М.: Педагогика, 1980. – 240 с.
12. Рыжик, В.И. 25000 уроков математики: кн. для учителя / В.И. Рыжик. – М.: Просвещение, 1993. – 238 с.
13. Сорох, А.М. Объяснение в процессе обучения: элементы дидактической концепции / А.М. Сорох. – М.: Педагогика, 1988. – 128 с.
14. Хуторской, А.В. Эвристическое обучение: Теория, методология, практика. Научное издание / А.В. Хуторской – М.: Международная педагогическая академия, 1998. – 266 с.
15. Чиканцева, Н.И. Самостоятельная работа учащихся средней школы в процессе обучения математике. Учебное пособие / Н.И. Чиканцева – М.: МГПИ им. В. И. Ленина, 1985. – 65 с.
16. Шаталов, В.Ф. Педагогическая проза: Из опыта работы школ г. Донецка / В.Ф. Шаталов. – М.: Педагогика, 1980. – 96 с.
17. Шаталов, В.Ф. Точка опоры / В.Ф.Шаталов. – М.: Педагогика, 1987. – 160 с.
Задание 3.14. Закрепление знаний учащихся при обучении математике в средней школе
Примерное содержание. Закрепление как необходимый этап современного урока математики. Психологические основы усвоения математических знаний. Развитие познавательной самостоятельности учащихся в процессе закрепления. Методические аспекты закрепления математических знаний и умений учащихся. Виды, методы и формы закрепления. Первичное, вторичное и систематизирующее закрепление. Воспроизводящее, тренировочное и творческое закрепление. Методы закрепления учебного материала в условиях фронтальной, групповой и индивидуальной форм учебной деятельности учащихся на уроке, Общие и специфические особенности закрепления отдельных элементов теоретических знаний по математике. Нестандартные виды закрепления. Основные средства закрепления знаний учащихся. Дифференцированное закрепление знаний.
Литература
1. Баланюк, Г.Б. Теория и практика закрепления нового учебного материала на уроке / Г.Б. Баланюк. – М.: Учпедгиз, 1955. – 136 с.
2. Беспалько, В.П. Образование и обучение с участием компьютеров (педагогика третьего тысячелетия) / В.П. Беспалько. – М.: Изд-во Московского психолого-социального института, 2002. – 351с.
3. Бутузов, И.Г. Дифференцированный подход к обучении учащихся на современном уроке / И.Г. Бутузов. – Новгород: ЛГПИ, 1972. –72 с.
4. Волович, М.Б. Наука обучать: Технология преподавания математики / М.Б. Волович. – М.: LINKA-PRESS, 1995. – 280 с.
5. Карп, А.П. Даю уроки математики...: кн. для учителя / А.П. Карп. – М.: Просвещение, 1992. –192 с.
6. Нурминский, И.И. Статистические закономерности формирования знаний и умений учащихся / И.И. Нурминский, Н.К. Гладышева. – М.: Педагогика, 1991. – 224 с.
7. Окунев, А.А. Спасибо за урок, дети!: О развитии творческих способностей учащихся: кн. для учителя / А.А. Окунев. – М.: Просвещение, 1988. – 128 с.
8. Полякова, А.В. Усвоение знаний и развитие младших школьников / Под ред. Л.В. Занкова. М.: Педагогика, 1978. – 144 с.
9. Талызина, Н.Ф. Управление процессом усвоения знаний: психологические основы / Н.Ф. Талызина. – М.: МГУ, 1984. – 344 с.
10. Фридман, Л.М. Психопедагогика общего образования. Пособие для студентов и учителей / Л.М. Фридман. – М.: Институт практической психологии, 1997. – 288 с.
11. Шаталов, В.Ф. Куда и как исчезли тройки / В.Ф.Шаталов. – М.: Педагогика, 1979. – 134 с.
Задание 3.15. Повторение, обобщение и систематизация математических знаний учащихся
Примерное содержание. Теоретические основы повторения в обучении математике учащихся основной школы: проблема повторения в методической и педагогической литературе; психологические основы повторения; функции и принципы организации повторения; комплексный подход к организации повторения в курсе математики. Методические аспекты организации повторения в обучении математике: методические особенности организации повторения в обучении математике в начальной школе, в 5-6 классах, в 7-9 классах.
Теоретико-методологические основы систематизации и обобщений знаний учащихся: цели и функции систематизации в процессе обучения; принципы и типы систематизации и обобщения; средства и методы осуществления систематизации и обобщения на уроках математики. Виды обобщения: индуктивные, дедуктивные и содержательные. Решение задач как способ систематизации и обобщения знаний учащихся
Понятие обобщающего повторения. Влияние обобщающего повторения на качество знаний учащихся. Обобщающие повторения как средство реализации внутрипредметных связей.
Литература
1. Аракелян, О.А. Некоторые вопросы повторения математики в средней школе / О.А. Аракелян. – М.: Учпедгиз, 1979. – 243 с.
2. Бабанский, Ю.К. Интенсификация процесса обучения / Ю.К. Бабанский. – М.: Знание,1987. – 78 с.
3. Борода, Л.Я. Некоторые формы систематизации знаний на уроке / Л.Я. Борода // Математика в школе. – 2005. – №4.
4. Далингер, В.А. Методика обобщающих повторений при обучении математике: пособие для учителей и студентов / В.А. Далингер – Омск: Изд-во ОГПИ, 1992. – 92 с.
5. Зайченко, Н.В. Три этапа обобщающего повторения курса алгебры IX класса / Н.В. Зайченко // Математика в школе. – 1985. – №1. – С.30-32.
6. Пичурин, Л.Ф. За страницами учебника алгебры / Л.Ф. Пичурин. – М.: Просвещение, 1990. – 224с
7. Пустынникова, A.M. Обогащающее повторение: учеб. пособие / А.М. Пустынникова, Н.Ю. Лизура, Т.А. Сазанова. – Томск: Оптимум, 2004. – 116 с.
8. Фридман, Л.М. Педагогический опыт глазами психолога / Л.М. Фридман. – М.: Просвещение, 1987.– 224 с.
9. Эрдниев, П.М. Сравнение и обобщение при обучении математике / П.М. Эрдниев. – М.: Учпедгиз, 1960. – 187 с.
10. Эрдниев, П.М. Укрупнение дидактических единиц в обучении математике / П.М. Эрдниев, Б.П. Эрдниев. – М.: Просвещение, 1986. – 255 с.
Задание 3.16. Контроль и коррекция знаний учащихся по математике
Литература
Примерное содержание. Функции и виды контроля. Дидактические требования к организации контроля. Место контроля в системе управления процессом усвоения знаний. Дидактические требования к содержанию контроля.
Анализ проблемы достижения учащихся с точки зрения современной психологической теории. Современные подходы к измерению качества знаний.
Коррекция знаний как составная часть учебного процесса. Диагностико-коррекционный урок – одна из форм оперативного контроля и коррекции знаний учащихся на уроках математики.
Использование новых информационных технологий для контроля и коррекции знаний учащихся по математике.
Литература
1. Амонашвили, Ш.А. Обучение. Оценка. Отметки / Ш.А Амонашвили. – М.: Знание, 1980. – 376 с.
2. Амтаниус, М. Психолого-педагогические основы контроля в учебном процессе / М Амтаниус. – М.: Изд-во МГУ, 1978. – 184 с.
3. Баймуханов, Б.Б. Тематический контроль и учет знаний / Б.Б. Баймуханов // Математика в школе. – 1989. – №5.
4. Борода, Л.Я. Некоторые формы контроля на уроке / Л.Я. Борода // Математика в школе. – 1988. – №4.
5. Зачеты в системе дифференцированного обучения математике / Л.О. Денищева, Л.В. Кузнецова, И.А. Лурье и др. – М.: Просвещение, 1993. – 191 с.
6. Качество знаний учащихся и пути его совершенствования / Под ред. М.Н.Скаткина, В.В.Краевского. – М.: Педагогика, 1978 . – 208 с.
7. Колобова, Е.В. Использование зачетной системы для контроля и оценки знаний учащихся / Е. В. Колобова // Математика в школе. – 1991. – №3. – С.25-27.
8. Оноприенко, О.В. Проверка знаний, умений и навыков учащихся в средней школе: книга для учителя / О.В. Оноприенко. – М.: Просвещение, 1988. – 124 с.
9. Организация контроля знаний учащихся в обучении математике: сборник статей / Сост. З.Г. Борчугова, Ю.Ю. Батий. – М.: Просвещение, 1980. – 96 с.
10. Скобелев, Г.Н. Контроль на уроках математики / Г.Н. Скобелев. –Минск: Народная. Асвета, 1986. – 104 с.
11. Терехин, М.Н. Проверка, оценка и учёт знаний, умений и навыков учащихся (методические разработки для студентов по педагогике) / М.Н. Терёхин – М.: МГПИ, 1985. – 20 с.
Задание 3.17. Методическая работа с математическими ошибками школьников
Примерное содержание. Различные подходы к описанию и упорядочиванию многообразия математических ошибок. Психолого-педагогический, анализ содержания основных понятий методической работы с математическими ошибками. Типологизация математических ошибок (вычислительные ошибки, речевые ошибки, ошибки в записях, ошибки в преобразованиях, ошибки в геометрических построениях и измерениях, ошибки при решении текстовых задач, логические ошибки, ошибки при решении уравнений и неравенств и др.).
Практические аспекты методической работы с математическими ошибками школьников. Причины типичных ошибок учащихся и особенности формирования рефлексивной деятельности по их предупреждению в процессе обучения математике. Система методической работы с математическими ошибками школьников (ошибковедение, мониторинг ошибок, устранение ошибок, предупреждение ошибок). Предупреждение типичных ошибок учащихся посредством организации самоконтроля как средства формирования рефлексивной деятельности. Приемы организации работы над ошибками в процессе обучения математике.
Литература
1. Азаров, А.И. Математика за курс базовой школы: обучение: экзамен: тестирование / А.И. Азаров, В.И. Савченко. – Минск: Аверсэв, 2006. – 480 с.
2. Азаров, А.И. Математика: задачи-«ловушки» на централизованном тестировании и экзамене / А.И. Азаров, С.А. Барвенов, В.С. Романчик. – Минск: Аверсэв, 2005. – 176 с.
3. Ариев, Н.К. Индивидуальные задания для устранения ошибок / Н.К. Ариев // Математика в школе. – 2000. – № 36. – С.19.
4. Брадис, В.М. Ошибки в математических рассуждениях / В.М. Брадис, В.Л. Минковский, А.К. Харчева. – М.: Просвещение, 1967. – 191 с.
5. Дубнов, Я.С. Ошибки в геометрических доказательствах / Я.С. Дубнов. – М.: Наука, 1969. – 64 с.
6. Зайкин, М.И. Провоцирующие задачи / М.И.Зайкин, В.А.Колосова // Математика в школе, 1997. – № 6. – С. 32-36.
7. Зеленский, А.С. Улучшение математической подготовки учащихся с помощью специально сконструированных ошибочных решений, определений и теорем / А.С. Зеленский // Образовательные технологии. – 2006. – № 3. – С. 29-32.
8. Лукьянова, Е.В. Логические ошибки в доказательствах геометрических предложений, связанные с чертежом / Е.В. Лукьянова // Новые технологии в образовании. – 2006. – №3. – С.33-35.
9. Ярский, А.С. Что делать с ошибками? / А.С. Ярский // Математика в школе. – 1998. – №2. – С.8-14.
Задание 3.18. Реализация межпредметных связей в процессе школьного обучения математике
Примерное содержание. Межпредметные связи как актуальная педагогическая проблема. Классификации межпредметных связей. Межпредметные задачи как средство реализации межпредметных связей и оптимизации учебного процесса. Методика реализации межпредметных связей в процессе школьного обучения математике. Использование.на уроках математики задач с физическим содержанием. Вопросы межпредметных связей курса математики и трудового обучения. Картографические сведения на уроках математики. Взаимосвязь геометрии и черчения. Задачи с экологическим сюжетом. Экономическое воспитание на уроках математики.
Литература
1. Боярчук, В.Ф. Межпредметные связи в процессе обучения / В.Ф. Боярчук. – Вологда, 1988. – 74 с.
2. Елагина, В. Учитель в пространстве МПС: реализация межпредметных связей (МПС) / В. Елагина // Высшее образование в России, 2003. – № 2. – С. 91-93.
3. Зверев, И.Д. Межпредметные связи в современной школе / И.Д.Зверева, В.Н. Максимов. – М.: Педагогика, 1981. – 159 с.
4. Кулагин, П.Г. О межпредметных связях в обучении / П.Г. Кулагин. – М.: Просвещение, 1983. – 96 с.
5. Максимова, В.Н. Межпредметные связи в процессе обучения / В.Н. Максимова. – М.: Просвещение, 1988 – 192 с.
6. Максимова, В.Н. Межпредметные связи и совершенствование процесса обучения / В.М. Максимова. – М.: Просвещение, 1984. – 143 с.
7. Межпредметные связи естественно-математических дисциплин: Сб. статей / Ред. Н.В.Федорова. – М.: Просвещение, 1980. – 208 с.
8. Резник, Н.И. Инвариантная основа внутрипредметных и межпредметных связей: Методологические и методические аспекты / Н.И. Резник. – Владивосток: Изд-во Дальневост. ун-та, 1998. – 206 с.
9. Сухаревская, Е.Ю. Технология интегрированного урока: Практич. пособ. для учителей начальной школы, студентов пед. учеб. заведений, слушателей ИПК / Е.Ю. Сухаревская. – Ростов н/Д: Учитель, 2003. – 128 с.
10. Федорец, Г.Ф. Проблема интеграции в теории и практике обучения (предпосылки, опыт) / Г.Ф. Федорец. – Л.,1989. – 96 с.
11. Федорец, Г.Ф. Межпредметные связи в процессе обучения. / Г.Ф. Федорец – Л.: ЛГПИ,1983. – 83 с.
12. Федорец, Г.Ф. Межпредметные связи и связь с жизнью – в основу обучения / Г.Ф. Федорец // Народное образование. – 1999. – № 5. – С.23-27.
13. Фёдорец, Г.Ф. Проблемы интеграции в теории и практике обучения (пути развития) / Г.Ф. Федорец. – Л.: ЛГПИ, 1990. – 84 с.
Задание 3.19. Нетрадиционные формы урока математики
Примерное содержание. Нестандартный подход к решению широкого спектра учебно-воспитательных задач, основы технологии проведения занятий нетрадиционных форм. Организация и методика проведения нестандартных форм урока; уроки в форме соревнований и игр; уроки, напоминающие публичные формы общения; уроки, опирающиеся на фантазию и творчество, и др. Интегрированные уроки. Учет индивидуальных особенностей учеников и учителя при проведении уроков нестандартного типа.
Литература
1. Кавтарадзе, Д.Н. Обучение и игры. Введение в активные методы обучения / Д.Н. Кавтарадзе – М.: Флинта, 1998. – 192 с.
2. Козина, М.Е. Математика. 5-11 классы: Нетрадиционные формы организации тематического контроля на уроках / М.Е. Козина, О.М. Фадеева. – М.: Учитель, 2008, – 136 с.
3. Кульневич, С.В. Нетрадиционные уроки в начальной школе (в 2-х частях) / С.В. Кульневич, Т.П. Лакоценина. – Ростов н/Д: Учитель, 2004. Часть 1 – 151 с.; Часть 2 – 176 с.
4. Кульневич, С.В. Не совсем обычный урок: Практич. пособие для учителей и классных руководителей, студентов пед. учеб. заведений, слушателей ИПК / С.В. Кульневич, Т.П. Лакоценина. – Воронеж: ЧП Лакоценин, 2006. – 175 с.
5. Кульневич, С.В. Современный урок. Часть I: Пособие для учителей, методистов, руководителей учебных заведений, слушателей ИПК / С.В. Кульневич, Т.П. Лакоценина. – Ростов-н/Д: Учитель, 2005. – 288 с.
6. Кульневич, С.В. Современный урок. Часть II: Не совсем обычные и совсем необычные уроки: Научно-практич. пособие для учителей, методистов, руководителей учебных заведений / С.В. Кульневич, Т.П. Лакоценина. – Ростов-н/Д: Учитель, 2005. – 288 с.
7. Кульневич, С.В. Современный урок. Часть III. Проблемные уроки: Научно-практич. пособие для учителей, методистов, руководителей учебных заведений, студентов и аспирантов пед. учеб. заведений, слушателей ИПК / С.В. Кульневич, Т.П. Лакоценина. – Ростов-н/Д: Учитель, 2006. – 296 с.
8. Кульневич, С.В. Совсем необычный урок / С.В. Кульневич, Т.П. Лакоценина. – Воронеж: ЧП Лакоценин, 2006. – 159 с.
9. Манвелов, С.Г. Конструирование современного урока математики / С.Г. Манвелов. – М.: Просвещение, 2002.– 175 с.
10. Рыжик, В.И. 30000 уроков математики: Кн.для учителя / В.И.Рыжик. – М.: Просвещение, 2003.– 288с.
11. Сухаревская, Е.Ю. Технология интегрированного урока: Практич. пособ. для учителей начальной школы, студентов пед. учеб. заведений, слушателей ИПК / Е.Ю. Сухаревская. – Ростов н/Д: Учитель, 2003. – 128 с.
Задание 3.20. Эстетика урока математики
Примерное содержание. Эстетическая составляющая математического образования. Возможности математики для эстетического развития
школьников на уроке и вне урока. Математика в технической эстетике, стандартизации и квалиметрии. Математические основы красоты в искусстве. Эстетика природы и математика. «Красивые» задачи в математике. История и математика. Математические мотивы в художественной литературе. Изобразительные средства эстетического воздействия. Математический вечер в контексте эстетической составляющей математического образования.
Литература
1. Азевич, А. И. Двадцать уроков гармонии: гуманитар.-мат. курс: для 9-11-х кл/ А.И. Азевич – М.: Школа-Пресс, 1998. – 159 с.
2. Анрах, Дж. Тимоти Удивительные фигуры: оптические иллюзии, поражающие воображение / Дж. Тимоти Анрах. – М.: АСТ Астрель, – 2002. – 125 с.
3. Аринина, Н.Л. Уроки прекрасного: из опыта работы / Н.Л. Аринина. – М.: Просвещение, 1983. – 128 с.
4. Арнхейм, Р. Искусство и визуальное восприятие / Р. Арнхейм. – Благовещенск: Благовещ. гуманитар. колледж, 2000. – 392 с.
5. Волошинов, А.В. Математика и искусство / А.В. Волошинов. – М.: Просвещение, 2000. – 400 с.
6. Гончаров, И.Ф. Эстетическое воспитание школьников средствами искусства и действительности / И.Ф. Гончаров. – М.: Педагогика, 1986. – 128 с.
7. Зенкевич, И.Г. Эстетика урока математики / И.Г. Зенкевич. – М.: Просвещение, 1981. – 79 с.
8. Кованцов, М.И. Математика и романтика / М.И. Кованцов. – Киев: Вища школа, 1980. – 134 с.
9. Копцик, В. Этюды по теории искусства. Диалоги естественных и гуманитарных наук / В. Копцик, В. Рыжов, В. Петров. – М.: ОГИ, 2004. – 365 с.
10. Мерзляк, А.Г. Неожиданный шаг или сто тринадцать красивых задач. Методические рекомендации / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. – Киев.: Агрофирма «Александрия», 1993. – 58 с.
11. Родионов, М.А. Эстетическая направленность обучения математике и пути ее актуализации / М.А. Родионов, Е.В. Ликсина. – Пенза: ПГПУ, 2003. – 171 с.
12. Саранцев, Г.И. Эстетическая мотивация обучения математике / Г.И. Саранцев. – Саранск: ПО РАО, 2003. – 136 с.
13. Шатуновский, Я. Математика как изящное искусство и её роль в общем образовании / Я. Шатуновский // Математика в школе, 2001 – № 3. – С.6-11.
14. Эстетическое воспитание школьников: Вопросы теории и методики / Под ред. М.Д. Таборидзе. – М.: Педагогика, 1998. – 101 с.
Дата: 2019-12-10, просмотров: 421.