Общая характеристика системы памяти эвм
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Системы памяти: классификация, критерии оценки

Как отмечалось в начале настоящей главы, для систем памяти (СП) характерна иерархическая организация, позволяющая достичь приемлемого компромисса между основными характеристиками запоминающих устройств. При этом различие требований к информационным потокам при решении разных классов задач обусловливает и различия в организации памяти ЭВМ, ориентированных на те или иные классы задач.

Особенности построения систем памяти могут затрагивать их структуру, принципы функционирования, логического взаимодействия и другие аспекты. К основным классификационным признакам систем памяти можно отнести следующие.

1. Количество уровней, т.е. отличных по своему назначению или конструктивным характеристикам запоминающих устройств. По этому признаку можно разделять СП на одноуровневые и многоуровневые. На практике одноуровневые системы памяти, представляющие собой одно или группу одинаковых ЗУ, встречаются лишь в специализированных системах.

Среди многоуровневых СП иногда выделяют системы с одним или несколькими исполнительными уровнями, т.е. уровнями, непосредственно доступными процессору. Широко известным примером такой системы является память ПЭВМ, в которой процессор имеет непосредственный доступ как к кэш памяти, так и к оперативной памяти.

2. Характер связей между уровнями. Связи между уровнями системы памяти, допускающие обмен информацией между ними, определяют допустимые потоки данных в системе и ее структуру. По характеру связей можно выделить:
- централизованные СП, в которых обмен информацией между ЗУ различных уровней осуществляется через какое-либо одно ЗУ, обычно через оперативную память;
- линейные СП, в которых обмен информацией возможен только между смежными уровнями системы (например, кэш – оперативная память – жесткие диски);
- смешанные СП, обладающие связями, характерными как для централизованных, так и для линейных СП (например, кэш – оперативная память – жесткий диск и CD ROM, имеющие одинаковые связи с оперативной памятью);
- СП со структурой полного графа, включающие в себя устройства, позволяющие устанавливать связи для обмена информацией между двумя любыми уровнями. Эти системы могут различаться по способу реализации таких связей на магистральные, в которых одна или большее количество шин разделяются во времени между всеми подключенными к ним устройствами, и матричные, имеющие коммутационную матрицу.

3. Тип разбиения адресного пространства памяти. Обычно память разделяется на логические блоки для упрощения управления ею, причем поддержка такого разбиения обеспечивается не только со стороны операционной системы, но и аппаратной частью. По этому признаку различают системы памяти :
- без разделения поля памяти на блоки;
- со страничной памятью, адресное пространство которых разделено на участки одинакового размера, называемые страницами;
- с сегментированием памяти, в которых память разделяется на сегменты, размер которых жестко не задается;
- с двухуровневым (странично-сегментным) разделением поля памяти.

4. Количество обслуживаемых системой памяти процессоров – признак, по которому различают СП однопроцессорных и многопроцессорных ЭВМ и систем. Причем в тех случаях, когда мультипроцессирование не является просто средством повышения надежности за счет дублирования вычислений, СП, по сути, является центром связи системы в единое целое. В таких условиях СП должна обеспечивать многоканальный доступ к информации с поддержкой целостности и непротиворечивости (когерентности) данных на всех уровнях системы.

5. Порядок обслуживания обращений к ЗУ нижних уровней также может использоваться для подразделения СП. По этому признаку можно различать системы с обслуживанием обращений в порядке поступления и с диспетчеризацией обращений, т.е. обслуживанием их в том порядке, который позволит уменьшить среднее время ожидания обслуживания обращения (см. п. 4.2.2 главы 4).

Кроме того, к этой категории можно отнести и назначение адресов в дисковом массиве, которое может быть последовательным или с расслоением адресов по дисководам, о чем говорилось в предыдущем параграфе в отношении многоблочных ЗУ.

При выборе структуры, состава и характеристик систем памяти следует учитывать, что противоречивость предъявляемых к ним требований и большое количество факторов, влияющих на их характеристики, обусловливают сложность получения достаточно объективных и точных комплексных оценок СП. Например, рис. 7 дает представление о факторах, влияющих на работоспособность ЗУ, разделенных в соответствии с [1] на группы, которые определяют информационную и конструктивную надежность и эффективность. При объединении отдельных ЗУ в систему к этим факторам добавляется еще целый ряд, связанный со взаимодействием ЗУ между собой в составе системы памяти.

Поэтому с целью более полного учета характера функционирования и окружения СП при выборе критерия ее оценки следует рассматривать эту систему как компоненту вычислительной машины (системы), ориентируясь на назначение последней.

Любой критерий оценки должен включать основные характеристики оцениваемой системы, к которым в рассматриваемом случае относятся емкость системы памяти, среднее время обращения к ней, пропускная способность, стоимость и надежность. Ряд характеристик, например радиационная устойчивость, габариты, масса, энергопотребление, в типовых применениях могут не учитываться. Хотя, если речь идет, например о мобильных системах, последние три из названных характеристик имеют важное значение.

Емкость EСП системы памяти можно рассматривать в двух аспектах: либо как сумму объемов всех ЗУ, входящих в состав СП, либо как количество информации (программ и данных), которое можно разместить в системе. В первом случае можно говорить о технической емкости СП, во втором – об эффективной емкости. Понятно, что эффективная емкость всегда меньше технической, так как она определяется не только собственно составом СП, но и методами организации хранения данных, методами управления памятью и др. Например, можно вспомнить о файловых системах, которые накладывают ограничения снизу на место на диске, занимаемое даже самым небольшим файлом

 

Системы памяти современных ЭВМ представляют собой совокупность аппаратных средств, предназначенных для хранения используемой в ЭВМ информации. К этой информации относятся обрабатываемые данные, прикладные программы, системное программное обеспечение и служебная информация различного назначения. К системе памяти можно отнести и программные средства, организующие управление ее работой в целом, а также драйверы различных видов запоминающих устройств.

Память представляет собой одну из важнейших подсистем ЭВМ, во многом определяющую их производительность. Тем не менее в течение всей истории развития вычислительных машин она традиционно считается их "узким местом".

Ключевым принципом построения памяти ЭВМ является ее иерархическая организация (принцип, сформулированный еще Джоном фон Нейманом), которая предполагает использование в системе памяти компьютера запоминающих устройств (ЗУ) с различными характеристиками. Причем с развитием технологий, появлением новых видов ЗУ и совершенствованием структурной организации ЭВМ количество уровней в иерархии памяти ЭВМ не только не уменьшается, но даже увеличивается. Например, сверхоперативные ЗУ больших ЭВМ 50-60-х годов заменяет двухуровневая кэш-память персональных ЭВМ 90-х годов.

В данной главе проводится классификация ЗУ с точки зрения особенностей их организации и использования. Затем рассматриваются типовые структуры систем памяти ЭВМ, а также основные параметры и критерии оценки запоминающих устройств и систем.









Дата: 2019-12-10, просмотров: 247.