На основе данной теории можно сформировать портфель с непредвиденными доходностями, которыми максимально коррелируют с непредвиденным компонентом будущего значения переменной у. Таким образом, основной переменной являются «новости» о yt+ k, где yt+ k – макроэкономическая переменная, например темп инфляции в период t+k. Новости являются чем-то новым в ожиданиях относительно yt+ k , причем . Например, может представлять собой новости, о которых уведомлен рынок в июле 2002 года о темпе инфляции между июлем 2002 и июлем 2003 года.
– доходность дублирующего портфеля, где и – доходности с конца периода t-1 до конца периода t. Дублирующий портфель формируется на основе непредвиденных доходностей базовых активов. Непредвиденная доходность – это действительная доходность за вычетом ожидаемой доходности с учетом того, что . Веса b в портфеле выбираются таким образом, что максимально коррелирует с .
Оценивание дублирующих новости портфелей является немного более сложным процессом, чем оценивание простых дублирующих портфелей. Всегда можно написать проектное уравнение новостей на неожиданную составляющую доходности. Ключевым предположением является то, что изменения в доходностях отражают изменения в ожиданиях относительно значений переменных в будущем, т.е. ненулевое решение в уравнении:
, (2.1)
где h t – составляющая новостей, ортогональная неожиданному компоненту доходности.
Т.к. неожиданная составляющая доходности активов отражает новости по поводу будущего денежного потока и дисконтных ставок, вектор а будет ненулевым для любой переменной, коррелированной с будущими денежными потоками и дисконтными ставками.
Из уравнения (2.1) может показаться, что необходимо определить для того, чтобы построить регрессию. К счастью, этого можно избежать, и все, что необходимо для оценивания регрессии, – это (непредвиденный компонент доходности в период t).
Реализация переменной yt+ k может быть переписана как сумма ожиданий в период t-1, непредвиденных изменений в ожиданиях в период t и с периода t до t+ k.
(2.2)
Здесь следует сделать второе предположение о том, что ожидаемые доходности базовых активов в период t являются линейной функцией от Zt-1 – вектора контрольных переменных, значения которых известны в период t-1:
(2.3)
Т.к. предположение, содержащиеся в уравнении (2.3) является потенциальной причиной ошибки спецификации модели, можно ожидать, что эмпирические результаты применения данной ошибочной модели будут относительно грубы, т.к. доходности активов достаточно непредсказуемы на коротком горизонте прогнозирования.
Таким образом, для дальнейшего удобства определим проектное уравнение лагированных ожиданий у как лагирование контролируемые переменных:
(2.4)
Объединяя уравнения (2.1) – (2.4), получаем:
(2.5)
где b = a, c = f – ad и .
Уравнение (2.5) является уравнением регрессии с будущим значением у в левой части и доходностью в период t и значением контрольных переменных в период t-1 в правой. Это уравнение состоятельно, т.к. все три составляющие по определению ортогональны как , так и .
МНК-регрессия, обозначенная уравнением (2.5), приводит к b – портфелю, непредвиденный компонент которого максимально коррелирует с . . В диссертации я предполагаю оценивать уравнение (2.5) и объяснить свойства получившихся дублирующих портфелей. Уравнение (2.5) практически не имеет теоретического смысла и зависит только от предположения, что изменения в ожиданиях на счет будущего значения у находят отражение в доходности активов, и то, что ожидаемая доходность активов является функцией лагированных контрольных переменных.
Здесь можно сделать несколько комментариев на счет практического применения уравнения (2.5). Во-первых, предполагается использование доходности портфеля с нулевыми издержками . Использование портфеля с нулевыми издержками означает, что нет необходимости накладывать ограничения на веса портфеля. Конечный дублирующий портфель является незатратным, т.к. является линейной комбинацией портфелей с нулевыми издержками.
Во-вторых, предполагается использовать в качестве базы доходности активов за месяц. Используя более длинные горизонты для базовых активов (к примеру, годовые доходности) следует быть более осторожным, т.к. с увеличением интервала повышается предсказуемость доходностей и оценки регрессии могут стать более чувствительными к отклонению от уравнения (2.3).
В-третьих, может показаться, что следует отобраться только такие базовые активы, доходности которых является наиболее информативными в плане объяснения ожиданий будущего значения у. Но в данном случае важным моментом является то, что различные активы имеют разные чувствительности к будущему значению у. Таким образом, регрессия должна являться линейной комбинацией доходностей активов, которые хеджируют общую составляющую вариации доходности, которая некоррелирована с будущим значением у.
В-четвертых, главной причиной выбора контролируемых переменных должна являться модель ожидаемой доходности, т.е. должна включать переменные, которые прогнозируют доходность базовых активов. Если же доходности активов полностью непредсказуемы, или если некоррелирована с , не следует включать вообще никаких контролируемых переменных. Вспомогательной ролью лагированной контролируемой переменной в уравнении (2.5) является помощь в объяснении будущего значения у. Включая в переменные, коррелирующие с , можно уменьшить вариацию остатков в уравнении (2.5) и, таким образом, более точно оценить параметр b.
В-пятых, добавление переменных в и сопряжено с издержками, т.к. чем больше переменных включается, тем более остро встает проблема практического объяснения и ложных выводов.
Дата: 2019-07-30, просмотров: 240.