R1, R2, R3 - сопротивления 1-го, 2-го и 3-го резисторов;
Rbx - входное сопротивление, Koy - коэффициент усиления.
1. При помощи стандартной функции Random генерируем равномерно распределённое значение температуры: temp.
Здесь вычислительный алгоритм разделяется на 2 части:
а) Если температура попала в положительную область диапазона рабочих температур т.е 20 ,
то, используя формулу (3.1) [1] генерируем нормально распределённые значения температурных коэффициентов aR+, a Rbx : dx1,dx2,dx3,dx 4.
aR+ - температурный коэффициент для резисторов в полож-й области температур;
a Rbx - температурный коэффициент для входного сопротивления.
dx1, dx2, dx3, dx4 – сгенерированные значения температурных коэффициентов для
1-го, 2-го, 3-го резисторов и входного сопротивления соответственно.
б)Если температура попала в отрицательную область диапазона рабочих температур т.е 20 ,
то, используя формулу (3.1) [1] генерируем нормально распределённые значения температурных коэффициентов aR+ , a Rbx : dx1,dx2,dx3,dx4.
aR- - температурный коэффициент для резисторов в отриц-й области температур;
a Rbx - температурный коэффициент для входного сопротивления.
dx1, dx2, dx3, dx4 – сгенерированные значения температурных коэффициентов для
1-го, 2-го, 3-го резисторов и входного сопротивления соответственно.
x = s× + m, (3.1)
где x – нормально распределённое случайное число;
m – математическое ожидание;
s – среднеквадратичное отклонение;
ri – стандартное равномерно распределенное случайное число в диапазоне 0..1. (ri получаем при помощи стандартной функции Random).
Далее пересчитываем значения первичных параметров (R1,R2, R3, Rbx) с учётом воздействия температуры. Для этого воспользуемся формулами [1]:
(3.2)
где – номинальные значения i-го первичного параметра;
–приращения значений i-го первичного параметра под действием температуры;
Согласно [1] относительное изменение i-го первичного параметра под воздействием температуры (старения) можно выразить следующим образом:
(3.3)
(3.4)
где – температурный коэффициент i-го первичного параметра;
°C,
где tср – температура окружающей среды;
сi – коэффициент старения i-го первичного параметра;
– рассматриваемый интервал времени.
В качестве tср для положительной области диапазона рабочих температур примем
наибольшую из возможных температур - Tv, а для отрицательной области примем наименьшую из возможных температур - Tn. С учётом этого и формул (3.3) и (3.4) формула (3.2) примет вид:
для ‘‘+‘‘ -ой области температур:
(3.5)
С учётом этой формулы получаем:
; ; ; ;
для ‘‘-‘‘ -ой области температур:
(3.6)
С учётом этой формулы получаем:
; ;
; ;
где Rtemp1, Rtemp2, Rtemp3 - значения сопротивлений 1-го, 2-го и 3-го резисторов соответственно с учётом действия температуры.
RWtemp – значение входного сопротивления под действием температуры.
SR1, SR2, SR3 – номинальные значения 1-го, 2-го и 3-го резисторов соответственно.
SRW – номинальное значение входного сопротивления.
Для получения значений коэффициента усиления (Koy) производим смещение параметров m = m(z) и s = s(z) его температурного коэффициента (a Koy) с учётом коэффициента парной корреляции , а затем, воспользовавшись подпрограммой формирования случайных нормально распределённых чисел с параметрами m = m(z/x) и s = s(z/x) генерируем нормально распределённое значение его температурного коэффициента(a Koy):dx5.
dx5 - сгенерированное значение температурного коэффициента для коэффициента усиления.
Воспользовавшись формулой (3.5) (для положительной области температур) или (3.6) (для отрицательной области температур) пересчитываем значения коэффициента усиления (Koy) с учётом воздействия температуры:
для ‘‘+‘‘ -ой области температур:
;
для ‘‘-‘‘ -ой области температур: ;
где KOUtemp – значение коэффициента усиления под действием температуры.
SKOU – номинальное значение коэффициента усиления.
В отрицательной и положительной области температур по формуле (1.1) определяем значение выходного параметра - коэффициента передачи (Kexit).
2. Используя формулу (3.1) генерируем нормально распределённые значения коэффициентов старения СR, С Rbx :dx1,dx2,dx3,dx4.
СR – коэффициент старения для резисторов;
С Rbx – коэффициент старения для входного сопротивления;
dx1, dx2, dx3, dx4 – сгенерированные значения коэффициентов старения для
1-го, 2-го, 3-го резисторов и входного сопротивления соответственно.
Воспользовавшись формулой:
(3.7)
пересчитываем значения первичных параметров (R1,R2, R3, Rbx) с учётом воздействия старения:
; ;
; ;
где Rtime1, Rtime2, Rtime3 - значения сопротивлений 1-го, 2-го и 3-го резисторов соответственно с учётом действия старения.
RWtime – значение входного сопротивления под действием старения.
SR1, SR2, SR3 – номинальные значения 1-го, 2-го и 3-го резисторов соответственно.
SRW – номинальное значение входного сопротивления.
Для получения значений коэффициента усиления (Koy) производим смещение параметров m = m(z) и s = s(z) его коэффициента старения(С Koy) с учётом коэффициента парной корреляции , а затем, воспользовавшись подпрограммой формирования случайных нормально распределённых чисел с параметрами m = m(z/x) и s = s(z/x) генерируем нормально распределённое значение его коэффициента старения(С Koy):dx5.
Воспользовавшись формулой (3.7) пересчитываем значения коэффициента усиления (Koy) с учётом воздействия старения:
;
где KOUtime – значение коэффициента усиления под действием температуры.
SKOU – номинальное значение коэффициента усиления.
По формуле (1.1) определяем значение выходного параметра: коэффициента передачи (Kexit).
Дата: 2019-07-30, просмотров: 203.