Понятие о статистических рядах динамики

 

Методы анализа рядов динамики занимают немаловажное место в связи с тем, что уровни общественных явлений изменяются во времени и, следовательно, необходимо выделить однородные этапы развития, найти и охарактеризовать свойственные им закономерности, тенденции и специфические особенности.

Ряд расположенных в хронологической последовательности значений статистических показателей, представляет собой временной (динамический) ряд. Каждый временной ряд состоит из двух элементов: во-первых, указываются моменты или периоды времени, к которым относятся приводимые статистические данные; во-вторых, приводятся те статистические показатели, которые характеризуют изучаемый объект на определенный момент или за указанный период времени.

Статистические показатели, характеризующие изучаемый объект, называются уровнями ряда. Уровни рядов динамики могут представлять собой абсолютные, относительные и средние величины.

В качестве показателя времени в рядах динамики могут указываться либо определенные моменты времени, либо отдельные периоды (сутки, месяцы, кварталы, полугодия и т.д.). В зависимости от характера временного параметра ряды делятся на моментные и интервальные. В моментных рядах уровни характеризуют значения показателя по состоянию на определенные моменты времени (пример: ряд курсов акций для конкретных чисел). В интервальных рядах уровни характеризуют значения показателей за определенные интервалы времени (пример: ряд годовой динамики производства продукции в стоимостном выражении).

Важной особенностью интервальных рядов динамики абсолютных величин является возможность суммирования их уровней. В результате чего получаются накопленные итоги, имеющие осмысленное содержание благодаря отсутствию повторного счета.

 

Показатели рядов динамики

 

При изучении динамики необходимо решить целый ряд задач и осветить широкий круг вопросов, с тем чтобы охарактеризовать особенности и закономерности развития изучаемого объекта. К числу основных задач, возникающих при изучении динамических рядов, относятся следующие:

1. характеристика интенсивности отдельных изменений в уровнях ряда от периода к периоду или от даты к дате

2. определение средних показателей временного ряда за тот или иной период

3. выявление основных закономерностей динамики исследуемого явления на отдельных этапах и в целом за рассматриваемый период

4. выявление факторов, обуславливающих изменение изучаемого объекта во времени

5. прогноз развития явления на будущее

Динамический ряд представляет собой ряд последовательных уровней, сопоставляя которые между собой можно получить характеристику скорости и интенсивности развития явления. В результате сравнения уровней получается система абсолютных и относительных показателей динамики, к числу которых относятся абсолютный прирост, коэффициент роста, темп прироста, абсолютное значение одного процента прироста. Если сравнению подлежат несколько последовательных уровней, то возможны 2 варианта сопоставления: каждый уровень динамического ряда сравнивается с одним и тем же предшествующим уровнем, принятым за базу сравнения; каждый уровень динамического ряда сравнивается с непосредственно ему предшествующим.

Абсолютный прирост определяется как разность между двумя уровнями динамического ряда и показывает, на сколько данный уровень ряда превышает уровень, принятый за базу сравнения:

Темп роста определяется как отношение двух сравниваемых уровней и показывает, во сколько раз данный уровень превышает уровень базисного периода:

Темп прироста показывает, на сколько процентов уровень данного периода больше (меньше) базисного уровня. Данный показатель может быть рассчитан 2 способами:

1.отношение абсолютного прироста к уровню, принятому за базу сравнения:

2.разность между темпом роста (в процентах) и 100%

Во всех вышеперечисленных формулах расчетах - текущий уровень ряда динамики, - предшествующий текущему уровень ряда, - базисный уровень ряда.

Между показателями динамики, вычисленными с постоянной и переменной базой, существует определенная связь:

1. произведение ряда последовательных цепных коэффициентов роста равно соответствующему базисному

2. частное от деления последующего базисного коэффициента роста на предшествующий ему базисный коэффициент равно соответствующему цепному коэффициенту роста

3. абсолютное значение 1% прироста составляет 0,01 уровня ряда за предшествующий период

4. темп прироста равен темпу роста минус 100

Кроме частных показателей вычисляются также и средние показатели: уровень ряда, темп роста, темп прироста. Метод расчета среднего уровня ряда динамики зависит от временного ряда. Для интервального ряда динамики средний уровень за период определяется по формуле простой средней арифметической:

Средний абсолютный прирост рассчитывается как средняя арифметическая из показателей скорости роста за отдельные промежутки времени.

 

Дата: 2019-07-30, просмотров: 108.