Принимая во внимание предыдущее свойство неподвижных точек и двойных прямых, получим
( Sl ) g = Sg ( l ). (3)
С помощью этой формулы можно получить аналогичные формулы для остальных движений частного вида. Для этого найдем сначала:
. [1]
Трансформация параллельного переноса движением
Если прямые u и v параллельны, то отображение g отображает их на параллельные прямые g(u) и g ( v ) с сохранением расстояния между ними. Следовательно, если , то
. (4)
В частности, если g есть поворот , то по свойству поворота ориентированный угол между векторами и равен углу α поворота. Отсюда из равенства следует, что результат поворота вектора не зависит от центра поворота.
Теорема. Для любого вектора , любого действительного числа х и перемещения g имеет место равенство:
. (5)
Доказательство. Если , то в силу (4) . Так как движение g сохраняет величину угла между векторами, а значит, и сохраняет, в частности, их сонаправленность или противонаправленность, то из или вытекает соответственно или . Отсюда и из равенства следует (5).
Доказанная зависимость (5) с помощью первой формулы (2) обобщается на такую:
. (6)
Действительно, .
Ясно, что зависимость вида (6) будет справедлива и для линейной комбинации любого числа векторов. [1]
Трансформация поворота движением
Далее, если u ∩ v = O, то g ( u )∩ g ( v ) = g ( O ) и ( g ( u ), g ( v )) = ( u , v ), если g – движение 1-го рода, и ( g ( u ), g ( v )) = - ( u , v ), если g – движение 2-го рода. Поэтому, если , то
(7)
где знак «+» берется при движении g 1-го рода и «-» - при движении g второго рода. [1]
В частности, если прямая l проходит через т.О пересечения прямых u и v, то
. (8)
Трансформация центральной симметрии движением
Так как центральная симметрия – частный случай поворота, а именно – поворот на 180°, то , а в силу формулы (7) , а это, в свою очередь, Zg ( O ). Таким образом,
( ZO ) g = Zg ( O ). (9)
Трансформация зеркальной симметрии движением
Рассмотрим трансформацию преобразования пространства – зеркальной симметрии. Неподвижными точками преобразования являются точки g ( α ), которые также образуют плоскость (по свойству движения), значит,
. (10)
Трансформация поворота относительно оси движением
Поворот относительно оси l на угол α – это преобразование пространства, композиция двух зеркальных симметрий относительно плоскостей β и γ таких, что β∩γ = l, (β, γ) = α. Заметим, что в данном примере движение g также должно быть движением пространства, поэтому оно не может быть поворотом относительно точки. Далее, , по формулам (2) это равняется (по (10)). Пусть g (β)∩ g (γ) = m, ( g (β), g (γ)) = φ. Тогда по определению поворота относительно оси .
β∩γ = l, а т.к. образ пересечения равен пересечению образов, то g (β)∩ g (γ) = g ( l ) и ( g (β), g (γ)) = (β, γ), если g – первого рода и ( g (β), g (γ)) = = - (β, γ), если g– второго рода, поэтому
. (12)
Дата: 2019-07-30, просмотров: 190.